Project description:RNAsequening revolutionized the bacterial gene expression analysis. The objective of this study was to identify the genes involved in metabolism of Inulin in Ligilactobacillus agilis. We have obtained a list of genes upregulated in Ligilactobacillus agilis when it is grown in 1% Inulin
Project description:Jujube (Ziziphus jujuba Mill.) is an economically and agriculturally significant fruit crop and is widely cultivated throughout the world. Heat stress has recently become one of the major abiotic stresses limiting plant growth and productivity. However, there are few studies on the transcriptome profiling of jujube subjected to heat stress. In this study, we analyzed the physiological and transcriptomic changes of heat-resistant jujube cultivar ‘HR’ and heat-sensitive cultivar ‘HS’ caused by high temperature stress. We statistically determined 984, 1468, 1727 and 2098 differentially expressed genes (DEGs) between ‘HR’ and ‘HS’ after 0, 1, 3, 5 d of heat stress, respectively. Gene Ontology (GO) enrichment analysis indicated that Aa great deal of heat-responsive genes were identified in these DEGs by Gene Ontology (GO) enrichment analysis. It suggests the distinct molecular mechanism of jujube response to heat stress. Furthermore, we validated the expression profiles of 12 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. These results will advance our knowledge of the genes involved in the complex regulatory networks of heat stress and provide genetic resources for further improving the heat tolerance in jujube.
Project description:Background In broilers, heat stress can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat stress-related losses annually. The objective of this study is to characterize the effects of chronic, cyclic heat stress on the transcriptome of a metabolically active organ, the liver. Characterizing the liver transcriptome of heat-stressed broilers will help clarify the effects of heat stress on metabolism. This information will provide a platform for future investigations that further elucidate physiologic responses to heat stress and seek methods to ameliorate the negative impacts of heat. Results Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology, resulted in a total of 138 million, 100 base pair single end reads, yielding 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold change ≥ 2 in response to chronic, cyclic heat stress (mid-point of the last day of a 7-day cyclic heat stress of 7 hours per day), with 27 down-regulated and 13 up-regulated. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes; “Cell Signaling, Molecular Transport, Small Molecule Biochemistry” and “Endocrine System Development and Function, Small Molecule Biochemistry Cell Signaling”. Members of the MAPK signaling pathway and differentially expressed genes that are associated with MAPK-related functions were prominent in the networks. Cellular proliferation and differentiation, inflammationand stress-related signaling, and apoptosis-associated genes were down-regulated in response to heat stress. Genes responsible for inhibiting feed intake and sphingolipidrelated signaling were up-regulated. Genes involved with the regulation of inflammation, stress, thyroid hormone level, and body temperature were both up- and down-regulated. Conclusions Chronic, cyclic heat stress of broilers results in metabolic changes that can be characterized through RNA-seq analysis of the liver transcriptome. The primary affected pathways included cell signaling, molecular transport, endocrine system development and signaling, and small molecule biochemistry.
Project description:gene expression was measured in control and heat resistance selected adult female flies before and at 8 time points after heat stress for 1h @ 36 degrees Abstract The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (368C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early–upregulated, early– downregulated, and late–upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock genes were generally found to be upregulated by stress in general. Keywords: Time series
Project description:Background In broilers, heat stress can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat stress-related losses annually. The objective of this study is to characterize the effects of chronic, cyclic heat stress on the transcriptome of a metabolically active organ, the liver. Characterizing the liver transcriptome of heat-stressed broilers will help clarify the effects of heat stress on metabolism. This information will provide a platform for future investigations that further elucidate physiologic responses to heat stress and seek methods to ameliorate the negative impacts of heat. Results Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology, resulted in a total of 138 million, 100 base pair single end reads, yielding 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold change ≥ 2 in response to chronic, cyclic heat stress (mid-point of the last day of a 7-day cyclic heat stress of 7 hours per day), with 27 down-regulated and 13 up-regulated. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes; “Cell Signaling, Molecular Transport, Small Molecule Biochemistry” and “Endocrine System Development and Function, Small Molecule Biochemistry Cell Signaling”. Members of the MAPK signaling pathway and differentially expressed genes that are associated with MAPK-related functions were prominent in the networks. Cellular proliferation and differentiation, inflammationand stress-related signaling, and apoptosis-associated genes were down-regulated in response to heat stress. Genes responsible for inhibiting feed intake and sphingolipidrelated signaling were up-regulated. Genes involved with the regulation of inflammation, stress, thyroid hormone level, and body temperature were both up- and down-regulated. Conclusions Chronic, cyclic heat stress of broilers results in metabolic changes that can be characterized through RNA-seq analysis of the liver transcriptome. The primary affected pathways included cell signaling, molecular transport, endocrine system development and signaling, and small molecule biochemistry. Examination of 2 heat treatments. Four heat stressed liver samples and 4 control liver samples analyzed.
Project description:Rice reproductive development is highly sensitive to high temperature stress. In rice flowering occurs over a period of at least 5 days. Heat stress alters the global gene expression dynamics in panicle especially during pollen development, anthesis and grain filling. Some of the rice genotypes like Nagina 22 show better spikelet fertility and grain filling compared to high yielding and popular rice cultivars like IR 64. We carried out microarray analysis of 8 days heat stressed panicles of Nagina22, heat and drought tolerant aus rice cultivar and IR64, a heat susceptible indica genotype along with unstressed samples of Nagina22 and IR64 so as to understand the transcriptome dynamics in these two genotypes under heat stress and to identify the genes important for governing heat stress tolerance in rice.