Project description:SARS-CoV-2 emerged in humans in late 2019 and was rapidly followed by spillback into naive wildlife, leading to both mortality events and novel enzootic cycles. Of special concern is whether SARS-CoV-2 could establish in bats in the Americas, given that sarbecoviruses coevolved with rhinolophid bats in the Eastern Hemisphere. We analyzed residual plasma samples from a previous SARS-CoV-2 challenge study of Mexican free-tailed bats (Tadarida brasiliensis) to identify candidate protein biomarkers of susceptibility and assessed the abundance of these same proteins in a wild population of this bat species in Texas. Using 2 uL plasma volumes, we generated proteomes from captive (n = 20; four resistant, five susceptible, 11 unchallenged) and wild (n = 15) bats using the S-Trap method and LC-MS/MS, identifying 475 proteins using data-independent acquisition and a species-specific genome annotation generated by the Bat1K Project.
Project description:Brown adipose tissue (BAT) evolved in mammals as a natural defence system against hypothermia and obesity. While existence of BAT in adult humans has been recently appreciated, its cellular origin and molecular identity remain elusive due in large to high cellular heterogeneity within adipose tissues. Here we isolated clonal adipocytes from adult human BAT as well as WAT (control) and critically analyzed their transcriptome to identify bona fide BAT markers and its new functions.
Project description:Bifidobacteria dominate the composition of the neonatal gut microbiota in the first number of weeks following birth. A number of species in particular are found with a significantly higher frequency in the microbiome of breastfed infants, owing to their ability to rely on Human Milk Oligosacchraides (HMOs) as their sole carbohydrate substrate; namely B. bifidum, B. longum spp. infantis and B. breve. Bifidobacterium kashiwanohense is a species that has been isolated previously only from the faeces of infants, but extremely infrequently at that. Relatively little is currently known about the species itself, let alone the metabolic pathways that allow it to successfully establish a population in the infant gut. We have isolated a novel strain of B. kashiwanohense from the faeces of a breastfed infant on the basis of its ability to utilise the HMO component fucosyllactose as its sole carbohydrate source. In this study, we read and annotate the full genome sequence of this novel strain, and use the data obtained to direct our further experimental analysis of fucosyllactose metabolism in B. kashiwanohense. Using transcriptomic and growth analysis results, we identify the genes responsible for B. kashiwanohense to utilise fucosyllactose, and employ a combination of cloning, in vitro hydrolysis assays, and further, recombinant transcriptomic and growth assays to elucidate the pathway for fucosyllactose metabolism in B. kashiwanohense, as well as revealing insight into fucosyllactose and fucose metabolism in Bifidobacteria as whole.