Project description:We compared the global transcriptomic analysis of Desulfoluna spongiiphila strain AA1, an organohalide-respiring Desulfobacterota isolated from a marine sponge, with 2,6-dibromophenol or with sulfate as electron acceptor. The most significant difference of the transcriptomic analysis was the expression of one reductive dehalogenase gene cluster (rdh16), which was significantly upregulated with 2,6-dibromophenol.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:In the seabed, chemical defences mediate inter- and intraspecific interactions and may determine organisms’ success, shaping the diversity and function of benthic communities. Sponges represent a prominent example of chemically-defended marine organisms with great ecological success. The ecological factors controlling the production of their defensive compounds and the evolutionary forces that select for these defences remain little understood. Each sponge species produces a specific and diverse chemical arsenal with fish-deterrent, antifouling and antimicrobial properties. However, some small animals (mesograzers), mainly sea slugs, have specialized in living and feeding on sponges. Feeding on chemically-defended organisms provides a strategy to avoid predators, albeit the poor nutritional value of sponges. In order to investigate the mechanisms that control sponge chemical defence, with particular focus on the response to specialist grazers, we investigated the interaction between the sponge Aplysina aerophoba and the sea slug Tylodina perversa. Here we performed controlled experiments and collected sponge samples at different time points (3h, 1d and 6d after treatment). To further elucidate if the sponge response is specific to grazing by T. perversa, we also included a treatment in which sponges were mechanically damaged with a scalpel. We compared gene expression between treatments based on RNA-Seq data.
Project description:Marine sponges represent one of the few eukaryotic groups that ubiquitously harbor symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of archaeal ammonia oxidizers (AOA). In this study, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and direct isotope-based functional assays. We demonstrate that the I. basta symbiont is not closely related to other genomically sequenced sponge AOA and is a member of a new genus. “Candidatus Nitrosospongia bastadiensis” is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbor nitrite-oxidizing microbes. Consistently, Ca N. bastadiensis encodes and expresses the genetic repertoire required for chemolithoautotrophic ammonia oxidation. Furthermore, we show that this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system likely involved in defense against foreign DNA, represent important adaptations of AOA to life within these ancient filter-feeding animals.