Project description:Vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species or cell type specific manner. In each case, robust thermal sensitivity likely reflects specialized anatomical features of infrared sensing pit organs, as well as intrinsic heat sensitivity of trigeminal nerve fibers that innervate these structures. Here we show that vampire bats use a molecular strategy involving alternative splicing of the TRPV1 gene to generate a channel specifically within trigeminal ganglia that has a reduced thermal activation threshold. Selective expression of splicing factors in trigeminal, but not dorsal root ganglia, together with unique organization of the vampire bat TRPV1 gene underlies this mechanism of sensory adaptation. Comparative genomic analysis of the TRPV1 locus supports phylogenetic relationships within the proposed Pegasoferae clade of mammals. Gene expression measurements implicate a TRPV1 splice isoform as the heat-sensitive channel in vampire bats
Project description:Bats are remarkably long-lived for their size with many species living more than 20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigated requirements for malignant transformation in primary bat fibroblasts in four bat species - little brown bat (Myotis lucifugus), big brown bat (Eptesicus fuscus), cave nectar bat (Eonycteris spelaea) and Jamaican fruit bat (Artibeus jamaicensis) – spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence and express active telomerase. Bat cells displayed attenuated stress induced premature senescence with a dampened secretory phenotype. Unexpectedly, we discovered that bat cells could be readily transformed by only two oncogenic perturbations or “hits”: inactivation of either p53 or pRb and activation of oncogenic RASV12. This was surprising because other long-lived mammalian species require up to five hits for malignant transformation. Additionally, bat fibroblasts exhibited increased p53 and MDM2 transcript levels, and elevated p53-dependent apoptosis. The little brown bat showed a genomic duplication of the p53 gene. We hypothesize that bats evolved enhanced p53 activity through gene duplications and transcriptional upregulation as an additional anti-cancer strategy, similar to elephants. In summary, active telomerase and the small number of oncogenic hits sufficient to malignantly transform bat cells suggest that in vivo bats rely heavily on non-cell autonomous mechanisms of tumor suppression.
Project description:Bats are the only mammals capable of self-powered flying. Many bat species hibernate in winter. A reversible control of cerebral activities is critical for bats to accommodate a repeated torpor-arousal cycle during hibernation. Little is known about the molecular mechanism that regulates neuronal activities in torpid bats. In this study, brain proteins were fractionated and compared between torpid and active Rhinolophus ferrumequinum bats.
Project description:As the only truly flying mammals, bats use their unique wing formed from elongated digits connected by membranes to power their flight. The forelimb of bats consists of four elongated digits (digits II-V) and one shorter digit (digit I) that is morphologically similar to the hindlimb digits. Elongation of bat forelimb digits is thought to results from changes in the temporal and spatial expression of a number of developmental genes. As a result, comparing gene expression profiles between short and elongated digit morphologies of the fore- and hindlimbs may elucidate the molecular mechanisms underlying digit elongation in bats. Here, we performed a large-scale analysis of gene expression of forelimb digit I, forelimb digits II-V, and all five hindlimb digits in Myotis ricketti using digital gene expression tag profiling approach. Results of this study not only implicate several developmental genes as robust candidates underlying digit elongation in bats, but also provide a better understanding of the genes involved in autopodial development in general. A large-scale analysis of gene expression of 3 different parts of autopods in Myotis ricketti using digital gene expression tag profiling approach.
Project description:Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic filoviruses that cause hemorrhagic fever in humans. Bat species in both Chiropteran suborders host filoviruses, suggesting that bats may have coevolved with this viral family. Correlative data implicate bats as natural EBOV hosts, but neither a full-length genome nor an EBOV isolate has been found in any bats sampled. Here, we modelled filovirus infection in the Jamaican fruit bat (JFB), Artibeus jamaicensis. Bats were inoculated with either EBOV or MARV through a combination of oral, intranasal, and subcutaneous routes. EBOV-infected bats supported systemic virus replication and shed infectious virus orally. In contrast, MARV replicated only transiently and was not shed. In vitro, JFB cells replicate EBOV more efficiently than MARV, and MARV infection induced innate antiviral responses that EBOV efficiently suppressed. Experiments using VSV pseudoparticles or replicating VSV expressing the EBOV or MARV glycoprotein demonstrated an advantage for EBOV entry and replication early, respectively, in JFB cells. Overall, this study describes filovirus species-specific phenotypes for both JFB and their cells.
Project description:Vesper bats (family Vespertilionidae) experienced a rapid adaptive radiation beginning around 36 mya that resulted in the second most species rich mammalian family. Coincident with that radiation was an initial burst of DNA transposon activity that has continued into the present. Deep sequencing of small RNAs from the vespertilionid, Eptesicus fuscus, as well as dog and horse revealed that substantial numbers of novel bat miRNAs are derived from DNA transposons unique to vespertilionids. In fact, 35.9% of Eptesicus-specific miRNAs derive from DNA transposons compared to 2.2 and 5.9% of dog- and horse-specific miRNAs, respectively and targets of several miRNAs are identifiable. Timing of the DNA transposon expansion and the introduction of novel miRNAs coincides remarkably well with the rapid diversification of the family Vespertilionidae. We suggest that the rapid and repeated perturbation of regulatory networks by the introduction of many novel miRNA loci was a factor in the rapid radiation.
Project description:Vesper bats (family Vespertilionidae) experienced a rapid adaptive radiation beginning around 36 mya that resulted in the second most species rich mammalian family. Coincident with that radiation was an initial burst of DNA transposon activity that has continued into the present. Deep sequencing of small RNAs from the vespertilionid, Eptesicus fuscus, as well as dog and horse revealed that substantial numbers of novel bat miRNAs are derived from DNA transposons unique to vespertilionids. In fact, 35.9% of Eptesicus-specific miRNAs derive from DNA transposons compared to 2.2 and 5.9% of dog- and horse-specific miRNAs, respectively and targets of several miRNAs are identifiable. Timing of the DNA transposon expansion and the introduction of novel miRNAs coincides remarkably well with the rapid diversification of the family Vespertilionidae. We suggest that the rapid and repeated perturbation of regulatory networks by the introduction of many novel miRNA loci was a factor in the rapid radiation. A testicular tissue sample from dog, horse, and two different Eptesicus fuscus individuals. Four samples total.
Project description:As the only truly flying mammals, bats use their unique wing formed from elongated digits connected by membranes to power their flight. The forelimb of bats consists of four elongated digits (digits II-V) and one shorter digit (digit I) that is morphologically similar to the hindlimb digits. Elongation of bat forelimb digits is thought to results from changes in the temporal and spatial expression of a number of developmental genes. As a result, comparing gene expression profiles between short and elongated digit morphologies of the fore- and hindlimbs may elucidate the molecular mechanisms underlying digit elongation in bats. Here, we performed a large-scale analysis of gene expression of forelimb digit I, forelimb digits II-V, and all five hindlimb digits in Myotis ricketti using digital gene expression tag profiling approach. Results of this study not only implicate several developmental genes as robust candidates underlying digit elongation in bats, but also provide a better understanding of the genes involved in autopodial development in general.