Project description:Non-invasive acquisition of mRNA data from the skin can be extremely useful for understanding skin physiology and diseases. Inspired by the holocrine process, in which the sebaceous glands secrete cell contents into the sebum, we focused on the possible presence of mRNAs in skin surface lipids (SSLs). We found that measurable levels of human mRNAs exist in SSLs, where the sebum protects them from degradation by RNases. The AmpliSeq transcriptome analysis was modified to measure SSL-RNA levels, and our results revealed that the SSL-RNAs predominantly comprised mRNAs derived from sebaceous glands, the epidermis, and hair follicles. Analysis of SSL-RNAs non-invasively collected from patients with atopic dermatitis revealed increased expression of inflammation-related genes and decreased expression of terminal differentiation-related genes, consistent with the results of previous reports. Further, we found that lipid synthesis-related genes were downregulated in the sebaceous glands of patients with atopic dermatitis. These results indicate that the analysis of SSL-RNAs is a promising strategy to understand the pathophysiology of skin diseases.
Project description:BackgroundThe past decade of microbiome research has concentrated on cataloging the diversity of taxa in different environments. The next decade is poised to focus on microbial traits and function. Most existing methods for doing this perform pathway analysis using reference databases. This has both benefits and drawbacks. Function can go undetected if reference databases are coarse-grained or incomplete. Likewise, detection of a pathway does not guarantee expression of the associated function. Finally, function cannot be connected to specific microbial constituents, making it difficult to ascertain the types of organisms exhibiting particular traits-something that is important for understanding microbial success in specific environments. A complementary approach to pathway analysis is to use the wealth of microbial trait information collected over years of lab-based, culture experiments.MethodsHere, we use journal articles and Bergey's Manual of Systematic Bacteriology to develop a trait-based database for 971 human skin bacterial taxa. We then use this database to examine functional traits that are over/underrepresented among skin taxa. Specifically, we focus on three trait classes-binary, categorical, and quantitative-and compare trait values among skin taxa and microbial taxa more broadly. We compare binary traits using a Chi-square test, categorical traits using randomization trials, and quantitative traits using a nonparametric relative effects test based on global rankings using Tukey contrasts.ResultsWe find a number of traits that are over/underrepresented within the human skin microbiome. For example, spore formation, acid phosphatase, alkaline phosphatase, pigment production, catalase, and oxidase are all less common among skin taxa. As well, skin bacteria are less likely to be aerobic, favoring, instead, a facultative strategy. They are also less likely to exhibit gliding motility, less likely to be spirillum or rod-shaped, and less likely to grow in chains. Finally, skin bacteria have more difficulty at high pH, prefer warmer temperatures, and are much less resilient to hypotonic conditions.ConclusionsOur analysis shows how an approach that relies on information from culture experiments can both support findings from pathway analysis, and also generate new insights into the structuring principles of microbial communities.
Project description:Human skin contains various populations of memory T cells in permanent residence and in transit. Arguably, the best characterized of the skin subsets are the CD8(+) permanently resident memory T cells (TRM) expressing the integrin subunit, CD103. In order to investigate the remaining skin T cells, we isolated skin-tropic (CLA(+)) helper T cells, regulatory T cells, and CD8(+) CD103(-) T cells from skin and blood for RNA microarray analysis to compare the transcriptional profiles of these groups. We found that despite their common tropism, the T cells isolated from skin were transcriptionally distinct from blood-derived CLA(+) T cells. A shared pool of genes contributed to the skin/blood discrepancy, with substantial overlap in differentially expressed genes between each T cell subset. Gene set enrichment analysis further showed that the differential gene profiles of each human skin T cell subset were significantly enriched for previously identified TRM core signature genes. Our results support the hypothesis that human skin may contain additional TRM or TRM-like populations.
Project description:The microbial ecology of human skin is complex, but little is known about its species composition. We examined the diversity of the skin biota from the superficial volar left and right forearms in six healthy subjects using broad-range small subunit rRNA genes (16S rDNA) PCR-based sequencing of randomly selected clones. For the initial 1,221 clones analyzed, 182 species-level operational taxonomic units (SLOTUs) belonging to eight phyla were identified, estimated as 74.0% [95% confidence interval (C.I.), approximately 64.8-77.9%] of the SLOTUs in this ecosystem; 48.0 +/- 12.2 SLOTUs were found in each subject. Three phyla (Actinobacteria, Firmicutes, and Proteobacteria) accounted for 94.6% of the clones. Most (85.3%) of the bacterial sequences corresponded to known and cultivated species, but 98 (8.0%) clones, comprising 30 phylotypes, had <97% similarity to prior database sequences. Only 6 (6.6%) of the 91 genera and 4 (2.2%) of the 182 SLOTUs, respectively, were found in all six subjects. Analysis of 817 clones obtained 8-10 months later from four subjects showed additional phyla (numbering 2), genera (numbering 28), and SLOTUs (numbering 65). Only four (3.4%) of the 119 genera (Propionibacteria, Corynebacteria, Staphylococcus, and Streptococcus) were observed in each subject tested twice, but these genera represented 54.4% of all clones. These results show that the bacterial biota in normal superficial skin is highly diverse, with few well conserved and well represented genera, but otherwise low-level interpersonal consensus.
Project description:Tissue-resident memory T cells exist in both the epidermis and the dermis in human skin. To analyze these cells, the skin needs to be incubated with dispase II to separate the two layers, that is, the epidermis and the dermis. The next step varies among researchers; the subsequent enzymatic digestion of the two layers is popular, whereas the spontaneous migration method can also be done. Scraping of these layers to yield skin T cells may reduce antigen modulation. This study aimed to determine each method's limitations. Dispase II incubation itself cleaves T-cell antigens. Therefore, further enzymatic digestion with collagenases strongly cleaves antigens. The scraping method yields skin T cells that are affected by dispase II as it is. However, skin T-cell yield is low. The spontaneous migration method recovers and/or upregulates antigens with T-cell activation and loses ∼20% of T cells in the floating sheets. However, there was no prominent bias regarding CD103 expression between emigrants and the remaining T cells in the sheets. There were 104 and 105 CD3+ T cells per 1 cm2 of the epidermis and upper dermis, respectively. Collectively, each method has strengths and limitations to analyze both the epidermal and dermal T cells.