Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalianM-BM- pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including numerous genes that mediate maternal-fetal communication and immunotolerance.Furthermore we show that thousands of regulatory elements active inM-BM- decidualized human endometrial stromal cellsM-BM- are derived from ancient mammalian transposable elements which provided binding sites for transcription factors that mediate decidualization and endometrial cell-type identity.M-BM- Our results indicate that one of the defining mammalian novelties evolved via domestication of ancient mammalian transposable elements into hormone-responsive regulatory elements throughout the genome. Examination of histone modification and DNAse hypersensitivity in decidualized dESC
Project description:Plants function as an integrated system of interconnected organs, with shoots and roots mutually influencing each other. Brassinosteroid (BR) signaling is essential for whole-plant growth, yet the relative importance of shoot versus root BR function in shaping root system architecture (RSA) remains unclear. Here, we directly tackle this question using micro-grafts between wild-type and BR-null mutants in both Arabidopsis and tomato, assisted by phenotyping, transcriptomics, metabolic profiling, transmission electron microscopy, and modeling approaches. These analyses demonstrate that shoot BR, by determining root carbon availability, allows for a full rescue of mutant root biomass, while loss of shoot BR attenuates root growth. In parallel, root BR dictates the spatial distribution of carbon along the root, through local regulation of growth anisotropy and cell wall thickness, shaping root morphology. A newly developed “grow and branch” simulation model demonstrates that these shoot- and root-derived BR effects are sufficient to explain and predict root growth dynamics and branching phenotype in wild-type, BR-deficient mutants, and micro-graft combinations. Our interdisciplinary approach, applied to two plant species and integrating shoot and root hormonal functions, provides a new understanding of how RSA is modulated at various scales.
Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalian pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including numerous genes that mediate maternal-fetal communication and immunotolerance.Furthermore we show that thousands of regulatory elements active in decidualized human endometrial stromal cells are derived from ancient mammalian transposable elements which provided binding sites for transcription factors that mediate decidualization and endometrial cell-type identity. Our results indicate that one of the defining mammalian novelties evolved via domestication of ancient mammalian transposable elements into hormone-responsive regulatory elements throughout the genome.
2015-01-30 | GSE61793 | GEO
Project description:Novelties
| PRJEB49621 | ENA
Project description:Novelties
| PRJEB49689 | ENA
Project description:Cynanchum wilfordii and its related species (Apocynaceae)
Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalian pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved or lost uterine expression during the origins of mammalian pregnancy, including the loss of genes responsible for the mineralization of the eggshell in the Mammalian and Therian stem-lineages, and the recruitment of genes into uterine expression that mediate maternal-fetal communication and maternal immunotolerance of the fetal allograft in the Therian and Eutherian stem-lineages. Our results indicate that one of the defining mammalian novelties evolved through a step-wise process that dramatically changed uterine gene expression, generating a suite of evolutionary innovations that support prolonged gestations. We report genome-wide gene expression generated by mRNA-Seq from the pregnant endometrium of dog, armadillo, and the platypus.
Project description:Global analysis of brassinosteroid (BR)-mediated gene expression under abiotic stress identifies BR associated mechanisms of stress tolerance, and new stress-related genes