Project description:Ephydatia muelleri is a cosmopolitan freshwater demosponge, with potential to become a model system. We have participated in a large collaborative project to sequence the genome (PRJNA579531), methylome, transcriptome for this species, aiming to better understand the biology of this sponge species. In terms of DNA methylation, it presents relatively low methylation levels compared to the methylomes of other sponges (A. queenslandica and S. ciliatum), suggesting quite a lot of varation within the sponge phylum.
Project description:This project contains LC-MS/MS data for analysis on neuropeptides in Nematostella vectensis, Ephydatia fluviatilis and Bolinopsis mikado.
Project description:Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to the pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge that could spontaneously adsorb blood (1.149 kg/m-2 s-1/2) along with instantaneous anticoagulation. We demonstrate that intrinsic coagulation factors (especially XI) are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. Benefiting from the multiple inhibitory effects of sponge on coagulation enzymes and calcium depletion, the whole blood auto-transfusion in trauma-induced hemorrhage is unprecedentedly realized. The transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in an animal model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.
Project description:We characterised the genome organization in non-bilaterian animals (sponge Ephydatia muelleri, ctenophores Mnemiopsis leidyi and Hormiphora californensis, placozoans Trichoplax adhaerens and Cladtertia collaboinventa, and cnidarian Nematostella vectensis) and close unicellular relatives (ichthyosporeans Sphaeroforma arctica, filasterean Capsaspora owczarzaki and choanoflagellate Salpingoeca rosetta) by combining high-resolution chromosome conformation capture (Micro-C) with profiling of chromatin marks (ChIP-seq), accessible genomic regions (ATAC-seq) and gene expression (MARS-seq).
Project description:We characterised the genome organization in non-bilaterian animals (sponge Ephydatia muelleri, ctenophores Mnemiopsis leidyi and Hormiphora californensis, placozoans Trichoplax adhaerens and Cladtertia collaboinventa, and cnidarian Nematostella vectensis) and close unicellular relatives (ichthyosporeans Sphaeroforma arctica, filasterean Capsaspora owczarzaki and choanoflagellate Salpingoeca rosetta) by combining high-resolution chromosome conformation capture (Micro-C) with profiling of chromatin marks (ChIP-seq), accessible genomic regions (ATAC-seq) and gene expression (MARS-seq).
Project description:We characterised the genome organization in non-bilaterian animals (sponge Ephydatia muelleri, ctenophores Mnemiopsis leidyi and Hormiphora californensis, placozoans Trichoplax adhaerens and Cladtertia collaboinventa, and cnidarian Nematostella vectensis) and close unicellular relatives (ichthyosporeans Sphaeroforma arctica, filasterean Capsaspora owczarzaki and choanoflagellate Salpingoeca rosetta) by combining high-resolution chromosome conformation capture (Micro-C) with profiling of chromatin marks (ChIP-seq), accessible genomic regions (ATAC-seq) and gene expression (MARS-seq).