Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease. Complete haplotype phasing of 2 loci (MHC and KIR) in 1 human cell line.
Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease.
Project description:Uterine NK cells (uNK cells) form a distinct immune cell population in the endometrium and decidua. Here, we FACS-sorted KIR-CD39-,KIR+CD39- and KIR+CD39+ uNK cells from decidual samples.