Project description:scRNA-seq of mouse embryonic stem cells (mESC) derived from four different genetic backgrounds grown in ground state conditions and differentiated towards an epiblast stem cell like (EpiSCL) population.
Project description:Reversion from primed to naïve pluripotent status has been achieved by various signaling manipulation, but it is still unclear what signaling is the actual driving force to get over the hurdle from primed to naïve pluripotency. We previously reported that activation of AMP kinase (AMPK) contributed to maintenance of naïve pluripotency. Here, we further show that AMPK activators, AICAR, A769662 or metformin, can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to naïve pluripotent state. Primed mEpiSCs in our naïve cell culture condition with leukemia inhibitory factor (LIF) and 2 kinase inhibitors (2i) (2iL) never gave rise to naïve state cells. Addition of AICAR alone even in the absence of 2iL or either of AMPK inhibitors with LIF induced appearance of naïve-like cells from primed mEpiSCs. Through maintenance and passages of these cells in 2iL condition, clear naïve-like morphology colonies were purely obtained. They showed core naïve protein expression, and global naïve gene expression profiles. These cells contributed to chimeric mice including germline transmission. Inhibition of p38 signaling abolished the AMPK-elicited reversion and forced activation of p38 in primed mEpiSCs partially reproduced the naïve cell induction, suggesting that p38 is one of the critical downstream in AMPK activation. AMPK pathway should be a novel critical driving force in reversion of primed to naïve pluripotency.
Project description:Reversion from primed to naïve pluripotent status has been achieved by various signaling manipulation, but it is still unclear what signaling is the actual driving force to get over the hurdle from primed to naïve pluripotency. We previously reported that activation of AMP kinase (AMPK) contributed to maintenance of naïve pluripotency. Here, we further show that AMPK activators, AICAR, A769662 or metformin, can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to naïve pluripotent state. Primed mEpiSCs in our naïve cell culture condition with leukemia inhibitory factor (LIF) and 2 kinase inhibitors (2i) (2iL) never gave rise to naïve state cells. Addition of AICAR alone even in the absence of 2iL or either of AMPK inhibitors with LIF induced appearance of naïve-like cells from primed mEpiSCs. Through maintenance and passages of these cells in 2iL condition, clear naïve-like morphology colonies were purely obtained. They showed core naïve protein expression, and global naïve gene expression profiles. These cells contributed to chimeric mice including germline transmission. Inhibition of p38 signaling abolished the AMPK-elicited reversion and forced activation of p38 in primed mEpiSCs partially reproduced the naïve cell induction, suggesting that p38 is one of the critical downstream in AMPK activation. Single cell RNA-seq analysis under AICAR stimulation successfully demonstrated the reversion process with appearance of intermediate naïve-like population. AMPK pathway should be a novel critical driving force in reversion of primed to naïve pluripotency.
Project description:To characterize the EpiSCs (Epiblast stem cells) we established in our lab, we have employed whole genome microarray expression profiling as a platform to distinguish the EpiSCs (primed state) from ES cells (naïve state).
Project description:In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
Project description:Mouse embryonic stem cells (mESCs) fluctuate between a naïve inner cell mass (ICM)-like state and a primed epiblast-like state of pluripotency in serum, but are harnessed exclusively in a distinctive, apparently more naïve state of pluripotency (the ground state) with inhibitors for mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 pathways (2i). Understanding the mechanism ensuring a naïve state of pluripotency would be critical in realizing a full potential of ESCs. We show here that PRDM14, a PR domain-containing transcriptional regulator, ensures a naïve pluripotency by a dual mechanism: Antagonizing fibroblast growth factor receptor (FGFR) signaling that is activated paradoxically by the core transcriptional circuitry for pluripotency and directs a primed state and repressing de novo DNA methyltransferases that create a primed epiblast-like epigenome. PRDM14 exerts these functions by recruiting polycomb repressive complex 2 (PRC2) specifically to key targets and repressing their expression. Mouse Embryonic Stem Cells (mESCs) or mESC-like cells with different Prdm14 genotypes {Prdm14(+/+), Prdm14(-/-), and Prdm14(-/-) rescued with Avitag-EGFP-Prdm14 transgene [Prdm14(-/-)+AGP14]} are cultured on MEF in different medium [2i, Serum(day 2), Serum+MEK inhibitor (PD0325901) (day 2), Serum without LIF (day2)].
Project description:Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. While it is known that the addition of inhibitors of GSK3β and MEK (so-called 2i conditions) push ESC cultures towards a more homogeneous naïve pluripotent state, the molecular underpinnings of this naïve transition are not completely understood. Here we demonstrate that Dazl, a RNA-binding protein previously thought to be expressed specifically in developing primordial germ cells (PGCs), marks a subpopulation of ESCs in vitro that is actively transitioning toward naïve pluripotency. In the absence of Dazl expression, ESCs fail to induce proper expression of Tet enzymes required for 5-hydroxymethylation in 2i-culture conditions. As a result, 5-hydroxymethylation of methylated cystosine residues is impaired. Indeed, we demonstrate that Tet1 and Tet2 are mRNA targets of Dazl, indicating that Dazl might play a role in protection or stabilizing these mRNA molecules. Our results provide insight in the regulation of the acquisition of naïve pluripotency and demonstrate that Dazl is required for TET-mediated cytosine hydroxymethylation in cells that are actively reprogramming to a pluripotent ground state. RNA-IP experiments were used to identify the RNA species bound to DAZL.
Project description:Conventional embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) derived from primates resemble mouse epiblast stem cells, raising an intriguing question regarding whether the naïve pluripotent state resembling mouse embryonic stem cells (mESCs) exists in primates and how to capture it in vitro. Here we identified several specific signaling modulators that are sufficient to generate rhesus monkey fibroblast-derived iPSCs with the features of naïve pluripotency in terms of growth properties, gene expression profiles, self-renewal signaling, X-reactivation and the potential to generate cross-species chimeric embryos. Interestingly, together with recent reports of naïve human pluripotent stem cells, our findings suggest several conserved signaling pathways shared with rodents and specific to primates, providing significant insights for acquiring naïve pluripotency from other mammal species. In addition, the derivation of rhesus monkey naïve iPSCs also provides a valuable cell source for use in preclinical research and disease modeling. mRNA expression analysis of 4 rhesus monkey naive iPSC lines and 2 primed iPSC lines were examed.