Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to lettuce medium (LM) and lettuce root exudates (LX) to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Calcium deficiency response in liverwort, Arabidopsis and lettuce: (1) Marchantia polymorpha: M. polymorpha wildtype and Gβ-null mutant plants (Tak-1, gpb1-2) were grown in control liquid Yamagami media (2 mM Ca) for 6 days. For RNA-seq experiments, 6 day old gemmalings were transferred to calcium deficiency (0 mM Ca) media. Samples were collected at 48 h after the transfer. The transcriptomic profiles were collected from two independent batches. In total four biological replicates were used for each condition and each genotype for a total of 16 samples. (2) Arabidopsis thaliana: For Arabidopsis RNA-seq experiment, 6-day old seedlings grown on ½ strength MS media with sucrose were transferred to Yamagami media with 2 mM or 0 mM CaCl2 and treated for 7 days. (3) Lactuca Sativa: For lettuce RNA-seq, 4-day old seedlings grown on water agar (1%) were transferred to Yamagami media with 2 mM or 0.15 mM CaCl2 and treated for 7 days. In total four and three biological replicates were used for each condition for a total of 8 and 6 samples respectively for Arabidopsis and lettuce.
Project description:Leafy green vegetables, such as lettuce, have been increasingly implicated in outbreaks of foodborne illnesses due to contamination by Escherichia coli O157:H7. While E. coli can survive in soils, colonize plants, and survive on produce, very little is known about the interaction of E. coli with the roots of growing lettuce plants. In these studies a combination of microarray analyses and microbial genetics were used to gain a comprehensive understanding of bacterial genes involved in the colonization and growth of E. coli K12 on lettuce roots using a hydroponic assay system. Here we report that after three days of interaction with lettuce roots, 193 and 131 genes were significantly up-regulated and down-regulated at least 1.5 fold, respectively. Forty-five out of the 193 up-regulated genes (23%) were involved in protein synthesis and were highly induced. Genes involved in stress response, attachment and biofilm formation were up-regulated in E. coli when they interacted with lettuce roots under conditions of hydroponic growth. In particular crl, a gene regulating the cryptic csgA gene for curli production, was significantly up regulated. The crl, csgA and fliN mutants had a reduced capacity to attach to roots as determined by bacterial counts and by confocal laser scanning microscopy. Our microarray data showed that E. coli K12 increased the synthesis of proteins indicated that a dramatic change was induced in the physiology of the microorganism. This study indicates that E. coli K12 can efficiently colonize lettuce roots by using attachment and biofilm modulation genes and can readily adapt to the rhizosphere of lettuce plants. Further studies are needed to better characterize this interaction in pathogenic strains of this species. Escherichia coli MG1655 strains were grown in the lettuce rhizosphere for three days. Transcriptional profiling of E. coli was compared between cells grown with and without rhizosphere . Three biological replicates of each treatment were prepared, and six microarray slides were used.
Project description:ra05-12_nar2 - atnar2.1-1 - Does the ko of AtNAR2.1 leads to a differential expression in comparison to the WT when grown under high nitrate condition and transfered onto low nitrate concentration? - Plants were grown for 41 days in hydroponics in media containing 6 mM nitrate and then transferred to 6 or 0.2 mM nitrate media for 24h ( short days, irradiation 150 uE). Plants were harvested on day 42 during the first 2 hours of light. Keywords: dose response,gene knock out
Project description:Raw RNAseq data of hydroponically grown crops (cai xin, lettuce, and spinach) subjected under 31 different conditions. Comparative analysis of gene expression across species and stress conditions were carried out.
Project description:Bread wheat (Triticum aestivum L., cv. Fielder) plants were grown under iron (Fe) deficient hydroponic conditions to analyise transcriptomic changes in leaf and root tissue.
Project description:affy_popsec_nancy_pophydro_roots_poplar - This project aims to identify genes of interest for control of root growth in response to water deficit in a tree species: poplar. We look for genes and gene expression networks related to drought stress. We intend to analyse the transcriptome in root apices of cuttings grown in hydroponics and osmotically stressed with PEG. Root apex is the location of root elongation and these analyses intend to identify genes involved in the control of cell expansion and thus of root elongation. Indeed, root growth maintenance in response to water shortage contributes to plant tolerance to water deficit.-Poplar cuttings (cv Soligo) were grown in hydroponics. A moderate water deficit was applied by adding PEG to the nutrient solution (200g/l). After 3 days, the apex (1 cm-long) of the roots of each cutting were collected. For control and stressed treatments, RNAs were extracted from two pools of 5 to 9 roots (issued from 2 to 5 cuttings). A pool is considered as one biological replicate and corresponds to one Affymetrix slide. Keywords: treated vs untreated comparison
Project description:Leafy green vegetables, such as lettuce, have been increasingly implicated in outbreaks of foodborne illnesses due to contamination by Escherichia coli O157:H7. While E. coli can survive in soils, colonize plants, and survive on produce, very little is known about the interaction of E. coli with the roots of growing lettuce plants. In these studies, a combination of microarray analyses and surface enhanced Raman spectroscopy (SERS) were used to gain a comprehensive understanding of bacterial genes involved in the colonization and growth of E. coli O157:H7 on lettuce roots and compared to E. coli K12 using a hydroponic system (HS) which we have reported in the previous studies. Using microarray, after three days of interaction with lettuce roots, 94 and 109 genes of E. coli O157:H7 were significantly up-regulated and down-regulated at least 1.5 fold, respectively. Only 8 genes were also found in the E. coli K12 up-regulated genes. No genes were found in the down-regulated genes clusters between those two strains. For E. coli O157:H7, forty out of the 94 up-regulated genes (43%) were involved in protein synthesis and were highly repressed compared to 40 out of 193 (23%) E. coli K12 up-regulated genes associated with protein synthesis. The wildtype of E.coli O157:H7 colonized two log CFU per root less compared to E. coli K12. Genes involved in biofilm modulation (bhsA and ybiM) were significantly up-regulated in E. coli O157:H7 and curli production (crl and csgA) were found important for E. coli K12 to attach to lettuce roots in the previous studies. BhsA mutant of E. coli O157:H7 was impaired in the colonization of lettuce roots. The SERS spectra of E. coli K12 and O157 controls (cells without interacting with roots) were very similar. The spectra of E. coli K12 and O157 exposed to the hydroponic system (HS) showed some differences in the nucleic acid, protein, and lipid regions compared with controls. The spectra of E. coli K12 HS cells exhibited significant differences compared to spectra from E. coli O157 HS cells in the RNA and protein regions. The overall band intensity of amide regions declined for E. coli O157 HS cells, while it increased for E. coli K12 HS cells. The intensity of the RNA bands of E. coli K12 HS cells were also found much higher than those of E. coli O157 HS cells. These findings were in agreement to our Microarray data. Our microarray and SERS data showed that E. coli K12 and O157:H7 behavior dramatically differently in colonizing on lettuce roots. Compared to K12, E. coli O157:H7 colonized less efficiently on lettuce roots. Escherichia coli O157:H7 strains were grown in the lettuce rhizosphere for three days. Transcriptional profiling of E. coli was compared between cells grown with and without rhizosphere . Three biological replicates of each treatment were prepared, and six microarray slides were used.
Project description:This study was designed to identify candidate genes associated with iron efficiency in soybeans. Two genotypes, Clark (PI548553) and IsoClark (PI547430), were grown in both iron sufficient (100uM Fe(NO3)3) and iron deficient (50uM Fe(NO3)3) hydroponics conditions. The second trifoliate was harvested for RNA extraction for the microarray experiment. Candidate genes were identified by comparing gene expression profiles within genotypes between the two iron growth conditions. Keywords: Stress Response