Project description:The enigmatic Crimean green lizard (Lacerta viridis magnifica) is extinct but not valid: Mitogenomics of a 120-year-old museum specimen reveals historical introduction
Project description:In Europe, spirochetes within the Borrelia burgdorferi sensu lato complex are transmitted by Ixodes ricinus ticks. Specific associations are described between reservoir hosts and individual genospecies. We focused on green lizard (Lacerta viridis) as a host for ticks and potential host for borreliae. In 2004 and 2005, a total of 146 green lizards infested by ticks were captured, and 469 I. ricinus ticks were removed. Borrelial infection was detected in 16.6% of ticks from lizards. Of 102 skin biopsy specimens collected from lizards, 18.6% tested positive. The most frequently detected genospecies was B. lusitaniae (77.9%-94.7%). More than 19% of questing I. ricinus collected in areas where lizards were sampled tested positive for borreliae. B. garinii was the dominant species, and B. lusitaniae represented 11.1%. The presence of B. lusitaniae in skin biopsy specimens and in ticks that had fed on green lizards implicates this species in the transmission cycle of B. lusitaniae.
Project description:Parallel Analysis of RNA Ends (PARE) sequencing reads were generated to validate putative microRNAs and identify cleavage sites in Sorghum bicolor and Setaria viridis.
Project description:BackgroundLacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes.FindingsHere we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated.ConclusionThe combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.