Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants. A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from lowly-polluted Wijmeers pond at Uitbergen (Belgium), highly-polluted Hazewinkel pond at Willebroek (Belgium), extremely-polluted Dessel-Schotel canal at the locations of Schotel (Belgium) and low polluted Bolsena lake (Italy) environments.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants. A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from lowly-polluted Wijmeers pond at Uitbergen (Belgium), highly-polluted Hazewinkel pond at Willebroek (Belgium), extremely-polluted Dessel-Schotel canal at the locations of Schotel (Belgium) and low polluted Bolsena lake (Italy) environments. A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from lowly-polluted Wijmeers pond at Uitbergen (Belgium), highly-polluted Hazewinkel pond at Willebroek (Belgium), extremely-polluted Dessel-Schotel canal at the locations of Schotel (Belgium) and low polluted Bolsena lake (Italy) environments. Gene expression profiling was performed using an European eel-specific oligo-DNA microarray (GPL15124) of 14,913 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from high (Tiber river, Italy) and low pollution (Bolsena lake, Italy) environments. Gene expression profiling was performed using an European eel-specific oligo-DNA microarray of 14,913 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Systematic survey of gene and isoform allele-specific expression in human brain and liver tissues, and description of optimised bioinformatic and statistical methods to accurately measure allele-specific expression. DNA-seq data for the same set of samples have been deposited at the European Nucleotide Archive under project accessino PRJEB5279 ( http://www.ebi.ac.uk/ena/data/view/PRJEB5279 ).
Project description:Epigenetic variation has the potential to control environmentally dependent development and contribute to phenotypic responses to local environments. Environmental epigenetic studies of sexual organisms confirm the responsiveness of epigenetic variation, which should be even more important when genetic variation is lacking. A previous study of an asexual snail, Potamopyrgus antipodarum, demonstrated that different populations derived from a single clonal lineage differed in both shell phenotype and methylation signature when comparing lake versus river populations. Here, we examine methylation variation among lakes that differ in environmental disturbance and pollution histories. The differential DNA methylation regions (DMRs) identified among the different lake comparisons suggested a higher number of DMRs and variation between rural Lake 1 and one urban Lake 2 and between the two urban Lakes 2 and 3, but limited variation between the rural Lake 1 and urban Lake 3. DMR genomic characteristics and gene associations were investigated. Observations suggest there is no effect of geographic distance or any consistent pattern of DMRs between urban and rural lakes. Environmental factors may influence epigenetic response.
Project description:To determine gene expression differences in the olfactory epithelium of sea lamprey between sequential yet behaviorally distinct adult life history stages 2 samples: parasitic adults removed from fish in northern Lake Huron and Lake Michigan in February and March, and reproductive adults collected from Lake Huron and Lake Michigan tributaries in June