Project description:Co-digestion of fats, oils, and grease (FOG) with food waste (FW) can improve the energy recovery in anaerobic membrane bioreactors (AnMBRs). Here, we investigated the effect of co-digestion of FW and FOG in AnMBRs at fat mass loading of 0.5, 0.75, and 1.0 kg m-3 day-1 with a constant organic loading rate of 5.0 gCOD L-1 day-1 in both a single-phase (SP) and two-phase (TP) configuration. A separate mono-digestion of FW at an identical organic loading rate was used as the benchmark. During co-digestion, higher daily biogas production, ranging from 4.0 to 12.0%, was observed in the two-phase methane phase (TP-MP) reactor compared to the SP reactor, but the difference was statistically insignificant (p > 0.05) due to the high variability in daily biogas production. However, the co-digestion of FW with FOG at 1.0 kg m-3 day-1 fat loading rate significantly (p < 0.05) improved daily biogas production in both the SP (11.0%) and TP (13.0%) reactors compared to the mono-digestion of FW. Microbial community analyses using cDNA-based MinION sequencing of weekly biomass samples from the AnMBRs revealed the prevalence of Lactobacillus (92.2-95.7% relative activity) and Anaerolineaceae (13.3-57.5% relative activity), which are known as fermenters and fatty acid degraders. Syntrophic fatty acid oxidizers were mostly present in the SP and TP-MP reactors, possibly because of the low pH and short solid retention time (SRT) in the acid phase digesters. A greater abundance of the mcrA gene copies (and methanogens) was observed in the SP and MP reactors compared to the acid-phase (AP) reactors. This study demonstrates that FW and FOG can be effectively co-digested in AnMBRs and is expected to inform full-scale decisions on the optimum fat loading rate.
Project description:A comparative transcriptome approach was used to assess genes involved in metabolism and pathogenesis that are specifically activated during anaerobic growth of the spore-forming food-borne human pathogen Bacillus cereus ATCC 14579. Growth under anaerobic conditions in Brain Heart Infusion broth revealed a reduced growth rate and a lower yield as compared to that under aerobic conditions. Comparative transcriptome analysis of cells harvested at early- and mid-exponential growth phase, transition phase and stationary phase, subsequently showed hundreds of genes to be induced under anaerobic condition. These included novel genes identified for anaerobic growth of B. cereus, encoding metabolic pathways, such as the arginine deiminase pathway (ArcABDC), a formate dehydrogenase (FdhF) and a pyruvate fomate lyase (Pfl), and alternative respiratory proteins, such as arsenate reductases. Furthermore, the nitrosative stress response was induced in the anaerobic transition phase of growth, conceivably due to the production of nitric oxide as a by-product of nitrite and nitrate respiration. Notably, both hemolytic enzyme and enterotoxin encoding genes were activated in different oxygen limiting conditions, i.e. hemolytic enzyme encoding genes were induced during anaerobic growth, whereas enterotoxin encoding genes were induced in the transition and stationary phase of aerobic cultures reaching a high cell density. These data point to metabolic rearrangements, stress adaptation and activation of the virulent status of B. cereus under anaerobic conditions, such as encountered in the human GI-tract. Keywords: time course, anaerobic growth