Project description:we compared the skin transcriptomes of the black- and white-coated region from the Boer and Macheng Black crossbred goat with black head and white body using the Illumina RNA-Seq method. Six cDNA libraries derived from skin samples of the white coat region (n = 3) and black coat region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for each skin sample of black coat and white coat, respectively, of which 75.39% and 76.05% reads were covered in the genome database. Our study provides insight into the transcriptional regulation of two distinct coat color that might serve as a key resource for understanding coat color pigmentation of goat.
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows.
2013-12-26 | GSE53657 | GEO
Project description:A Novel TYRP1 Mutation Associated with Brown Coat Color in Siberian Huskies
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.