Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro. We performed six hybridizations (shotgun DNA microarray) with samples derived from Pseudomonas fluorescens Pf29Arp cultivated alone or with Laccaria bicolor S238N in vitro (3 control biological replicates and 3 biological replicates with L. bicolor)
Project description:The rhizosphere is a small region surrounding plant roots that is enriched in biochemicals from root exudates and populated with fungi, nematode, and bacteria. Interaction of rhizosphere organisms with plants is mainly promoted by exudates from the roots. Root exudates contain biochemicals that come from primary and secondary metabolisms of plants. These biochemicals attract microbes, which influence plant nutrition. The rhizosphere bacteria (microbiome) are vital to plant nutrient uptake and influence biotic and abiotic stress and pathogenesis. Pseudomonas is a genus of gammaproteobacteria known for its ubiquitous presence in natural habitats and its striking ecological, metabolic, and biochemical diversity. Within the genus, members of the Pseudomonas fluorescens group are common inhabitants of soil and plant surfaces, and certain strains function in the biological control of plant disease, protecting plants from infection by soilborne and aerial plant pathogens. The soil bacterium Pseudomonas protegens Pf-5 (also known as Pseudomonas fluorescens Pf-5) is a well-characterized biological strain, which is distinguished by its prolific production of the secondary metabolite, pyoverdine. Knowledge of the distribution of P. fluorescens secretory activity around plant roots is very important for understanding the interaction between P. fluorescens and plants and can be achieved by real time tracking of pyoverdine. To achieve the capability of real-time tracking in soil, we have used a structure-switching SELEX strategy to select high affinity ssDNA aptamers with specificity for pyoverdine over other siderophores. Two DNA aptamers were isolated, and their features compared. The aptamers were applied to a nanoporous aluminum oxide biosensor and demonstrated to successfully detect PYO-Pf5. This sensor provides a future opportunity to track the locations around plant roots of P. protegens and to monitor PYO-Pf5 production and movement through the soil.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro. We performed nine hybridizations (macroarray) with samples derived from Laccaria bicolor cultivated alone (3 biological replicates), with P. fluorescens BBc6R8 (3 biological replicates) and with Pf29Arp (3 biological replicates)
Project description:Anthropogenic perturbations to the nitrogen cycle, primarily through use of synthetic fertilizers, is driving an unprecedented increase in the emission of nitrous oxide (N2O), a potent greenhouse gas, and an ozone depleting substance, causing urgency in identifying the sources and sinks of N2O. Microbial denitrification is a primary contributor to the biotic production of N2O in anoxic regions of soil, marine systems, and wastewater treatment facilities. Here, through comprehensive genome analysis, we show that pathway partitioning is a ubiquitous mechanism of complete denitrification by microbial communities. We have further investigated the mechanisms and consequences of process partitioning through detailed physiological characterization and kinetic modeling of a synthetic community of Rhodanobacter R12 and Acidovorax 3H11. We have discovered that these two bacterial isolates from a heavily NO3- contaminated superfund site complete denitrification through the exchange of nitrite (NO2-) and nitric oxide (NO). Our findings further demonstrate that cooperativity within this denitrifying community emerges through process partitioning of denitrification and other processes, including amino acid metabolism. We demonstrate that certain contexts, such as high NO3-, cause unbalanced growth of community members, due to differences in their substrate utilization kinetics and inter-enzyme competition. The altered growth characteristics of community members drives accumulation of toxic NO2- , which disrupts denitrification causing N2O off gassing.
Project description:The earth’s climate is warming, and warming-induced biological feedbacks to climate threaten to further destabilize ecosystems. In a 30-year soil warming field experiment at the Harvard Forest in central Massachusetts, microbial isolates from heated (+5 degrees C above ambient) show signs of irreversible adaptation to warming in traits associated with altered soil biogeochemical cycling. Our labs have documented physiological adaptation in all three dimensions of microbial activities: growth, resource acquisition, and stress tolerance. We will use metabolomics to investigate the nature of adaptation due to long-term warming, where reduced soil organic matter, reduced soil water holding capacity and potentially increased niche partitioning may be a selective pressure. Specifically we hypothesize that increased drought tolerance of Actinobacteria exposed to long-term warming is due to production of more or different compatible solutes compared to isolates from controls.
The work (proposal:https://doi.org/10.46936/10.25585/60008103) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:We carried out an in-depth analysis of the monthly variations of a temperate grassland ecosystem to examine a range of biotic and abiotic factors that underpin soil respiration changes in response to warming.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:Identifying the genetic basis for natural selection is a fundamental research goal, and particularly significant for soil fungi because of their central role in ecosystem functioning. Here, we identify rapid evolutionary processes in the plant root colonizing insect pathogen Metarhizium robertsii. While adapting to a new soil community, expression of TATA box containing cell wall and stress response genes evolved at an accelerated rate, whereas virulence determinants, transposons and chromosome structure were unaltered. The survival of diversified field isolates was increased, confirming that the mutations were adaptive, and we further show that large populations of Metarhizium are principally maintained by associations with plant roots rather than insect populations. These results provide a mechanistic basis for understanding mutational and selective effects on soil microbes.
Project description:For shade-intolerant species, shade light indicates the close proximity of neighboring plants and triggers the shade avoidance syndrome (SAS), which causes exaggerated growth and reduced crop yield. We report that microbiotal root commensals(Pseudomonas fluorescens and Root918) alleviate the shade avoidance responses in Arabidopsis. To identify the functions of Pseudomonas fluorescens and Root918 during SAS, we performed RNA-seq to search for differentially expressed genes (DEGs) in different tissues by comparing the transcript levels of shoot and root parts of col0 in germ-free, Pseudomonas fluorescens and Root918 during white light and shade conditions.