Project description:Background: The rapid evolution and dissemination of mobilized colistin resistance gene (mcr) family has revealed as a severe threat to the global public health. Nevertheless, dramatic reduction in the prevalence of mcr-1, the major member of mcr family, was observed after the withdrawal of colistin in animal fodder in China since 2017, demonstrating that colistin acts as a selective stress to promote the dissemination of mcr-1. As the second largest lineage, mcr-3 was firstly discovered in 2017 and has been identified from numerous sources. However, whether the spreading of mcr-3 is driven by colistin remains unknown. Methods: To this end, we investigated the global prevalence of mcr-3 from 2005 to 2022 by an up-to-date systematic review, along with a nation-wide epidemiological study to establish the change of mcr-3 prevalence in China before and after 2017. To investigate the fitness cost imposed by MCR-3 upon bacterial host, in vitro and in vivo competitive assays were employed, along with morphological study and fluorescent observation. Moreover, by replacing non-optimal codons with optimal codons, synonymous mutations were introduced into the 5’-coding region of mcr-3 to study mechanisms accounting for the distinct fitness cost conferred by MCR-1 and MCR-3. Furthermore, by combining AlphaFold and molecular dynamics (MD) simulation, we provided a complete characterization on the putative lipid A binding pocket localized at the linker domain of MCR-3. Crucially, inhibitors targeting at the putative binding pocket of MCR-1 or MCR-3 were identified from small molecules library using the pipeline of virtual screening. Findings: The global prevalence of mcr-3 increased continuously from 2005 to 2022. The average prevalence was 0.18% during 2005-2014 and rapidly increased to 3.41% during 2020-2022. The prevalence of mcr-3 in China increased from 0.79% in 2016 to 5.87% in 2019. We found that the fitness of mcr-3-bearing E. coli and empty plasmid control was comparable but higher than that of mcr-1-positive strain. Although the putative lipid A binding pocket of MCR-3 was similar to that of in MCR-1, mcr-3 occupies remarkable codon bias at the 5’-end of coding region that disrupted the stability of mRNA, further reduced its protein expression in E. coli, resulting in the low fitness burden of bacterial host. Moreover, the 5’-end codon usage frequency appeared as a critical factor related with the evolution of mcr family. Furthermore, based on the similar lipid A binding pocket among MCR family protein, we identified three novel MCR inhibitors targeting at such pocket by screening from small-molecule library, which effectively restored the colistin susceptibility of mcr-bearing E. coli. Interpretation: For the first time, we found that the prevalence of mcr-3 increased continuously during 2016-2019 in China, demonstrating that the withdrawal of colistin in husbandry failed to prevent the dissemination of mcr-3. Our study evidenced that the 5’-end codon bias appeared as a crucial regulator upon the fitness cost conferred by horizontally transferred genes. Most importantly, the putative lipid A binding pocket verified from current study was a promising target site for designing inhibitors against mcr-positive strains.
Project description:Identification of mobile colistin resistance genes (mcr-1.1, mcr-5, mcr-8.1) in Enterobacteriaceae of human and animal origins, Nigeria.
Project description:The Moutan Cortex Radicis (MCR) has been used as an analgesic, sedative and anti-inflammatory agent. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs) and the gene expression changes by the MCR when challenged with LPS using a microarray chip.
Project description:The Moutan Cortex Radicis (MCR) has been used as an analgesic, sedative and anti-inflammatory agent. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs) and the gene expression changes by the MCR when challenged with LPS using a microarray chip. Human gingival fibroblast were divided into three experimental groups; 1, C: Control, 2, LPS: LPS-treatment only, 3, MCR40: LPS- and MCR40-treatments. Total RNA was isolated from each experimental fibroblast (3 experimental group M-CM-^W 1 sample of each experimental group = total 3 samples).
Project description:Enterotoxin-producing C. perfringens type A is a common cause of food poisonings. The cpe encoding the enterotoxin can be chromosomal (genotype IS1470) or plasmid-borne (genotypes IS1470-like-cpe or IS1151-cpe). The chromosomal cpe-carrying C. perfringens are a more common cause of food poisonings than plasmid-borne cpe-genotypes. The chromosomal cpe-carrying C. perfringens type A strains are generally more resistant to most food-processing conditions than plasmid-borne cpe-carrying strains. On the other hand, the plasmid-borne cpe-positive genotypes are more commonly found in human feces than chromosomal cpe-positive genotypes, and humans seem to be a reservoir for plasmid-borne cpe-carrying strains. Thus, it is possible that the epidemiology of C. perfringes type A food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains is different. A DNA microarray was designed for analysis of genetic relatedness between the different cpe-positive and cpe-negative genotypes of C. perfringens strains isolated from human, animal, environmental and food samples. The DNA microarray contained two probes for all protein-coding sequences in the three genome-sequenced strains (C. perfringens type A strains 13, ATCC13124, and SM101). The chromosomal and plasmid-borne C. perfringens genotypes were grouped into two distinct clusters, one consisting of the chromosomal cpe-genotypes and the other consisting of plasmid-borne cpe-genotypes. Analysis of the variable gene pool complemented with the growth studies demonstrate different carbohydrate and amine metabolism in the chromosomal and plasmid-borne cpe-carrying strains, suggesting different epidemiology of the cpe-positive C. perfringens strain groups.