Project description:Teeth from 38 aboriginal remains of La Palma (Canary Islands) were analyzed for external and endogenous mitochondrial DNA control region sequences and for diagnostic coding positions. Informative sequences were obtained from 30 individuals (78.9%). The majority of lineages (93%) were from West Eurasian origin, being the rest (7%) from sub-Saharan African ascription. The bulk of the aboriginal haplotypes had exact matches in North Africa (70%). However, the indigenous Canarian sub-type U6b1, also detected in La Palma, has not yet been found in North Africa, the cradle of the U6 expansion. The most abundant H1 clade in La Palma, defined by transition 16260, is also very rare in North Africa. This means that the exact region from which the ancestors of the Canarian aborigines came has not yet been sampled or that they have been replaced by later human migrations. The high gene diversity found in La Palma (95.2+/-2.3), which is one of the farthest islands from the African continent, is of the same level than the previously found in the central island of Tenerife (92.4+/-2.8). This is against the supposition that the islands were colonized from the continent by island hopping and posterior isolation. On the other hand, the great similarity found between the aboriginal populations of La Palma and Tenerife is against the idea of an island-by-island independent maritime colonization without secondary contacts. Our data better fit to an island model with frequent migrations between islands.
Project description:The viscosity of magma exerts control on all aspects of its migration through the crust to eruption. This was particularly true for the 2021 eruption of Cumbre Vieja (La Palma), which produced exceptionally fast and fluid lava at high discharge rates. We have performed concentric cylinder experiments to determine the effective viscosities of the Cumbre Vieja magma, while accounting for its chemistry, crystallinity, and temperature. Here we show that this event produced a nepheline-normative basanite with the lowest viscosity of historical basaltic eruptions, exhibiting values of less than 10 to about 160 Pa s within eruption temperatures of ~1200 to ~1150 °C. The magma's low viscosity was responsible for many eruptive phenomena that lead to particularly impactful events, including high-Reynolds number turbulent flow and supercritical states. Increases in viscosity due to crystallization-induced melt differentiation were subdued in this eruption, due in part to subtle degrees of silica enrichment in alkaline magma.
Project description:La Palma island is one of the highest potential risks in the volcanic archipelago of the Canaries and therefore it is important to carry out an in-depth study to define its state of unrest. This has been accomplished through the use of satellite radar observations and an original state-of-the-art interpretation technique. Here we show the detection of the onset of volcanic unrest on La Palma island, most likely decades before a potential eruption. We study its current evolution seeing the spatial and temporal changing nature of activity at this potentially dangerous volcano at unprecedented spatial resolutions and long time scales, providing insights into the dynamic nature of the associated volcanic hazard. The geodetic techniques employed here allow tracking of the fluid migration induced by magma injection at depth and identifying the existence of dislocation sources below Cumbre Vieja volcano which could be associated with a future flank failure. Therefore they should continue being monitored using these and other techniques. The results have implications for the monitoring of steep-sided volcanoes at oceanic islands.