Project description:We isolated an efficient doxycycline degrading strain Chryseobacterium sp. WX1. To investigate gene expression patterns during doxycyclinedegradation by strain WX1, we conducted a comparative transcriptomic analysis using cultures of strain WX1 with and without doxycycline addition. The RNA-Seq data revealed that 90.44-96.56% of the reads mapped to the genome of Chryseobacterium sp. WX1 across all samples. Differentially expressed genes (DEGs) analysis (|log2FC| >2; p < 0.01) showed that 693 genes were significantly up-regulated and 592 genes were significantly down-regulated.
Project description:In this study, we isolated a potent doxycycline-degrading bacterium, Chryseobacterium sp. WX1, from environmental samples. To elucidate the molecular mechanisms underlying doxycycline degradation by strain WX1, we assessed and interpreted the proteomic profiles of Chryseobacterium sp. WX1 under conditions both with and without doxycycline exposure.
Project description:This paper presents a teleoperation system of robot grasping for undefined objects based on a real-time EEG (Electroencephalography) measurement and shared autonomy. When grasping an undefined object in an unstructured environment, real-time human decision is necessary since fully autonomous grasping may not handle uncertain situations. The proposed system allows involvement of a wide range of human decisions throughout the entire grasping procedure, including 3D movement of the gripper, selecting proper grasping posture, and adjusting the amount of grip force. These multiple decision-making procedures of the human operator have been implemented with six flickering blocks for steady-state visually evoked potentials (SSVEP) by dividing the grasping task into predefined substeps. Each substep consists of approaching the object, selecting posture and grip force, grasping, transporting to the desired position, and releasing. The graphical user interface (GUI) displays the current substep and simple symbols beside each flickering block for quick understanding. The tele-grasping of various objects by using real-time human decisions of selecting among four possible postures and three levels of grip force has been demonstrated. This system can be adapted to other sequential EEG-controlled teleoperation tasks that require complex human decisions.
Project description:Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.