Project description:Xenoturbella bocki, a marine animal with a simple body plan, has recently been suggested to be sister group to the Acoelomorpha, together forming the new phylum Xenacoelomorpha. The phylogenetic position of the phylum is still under debate, either as an early branching bilaterian or as a sister group to the Ambulacraria (hemichordates and echinoderms) within the deuterostomes. Although development has been described for several species of Acoelomorpha, little is known about the life cycle of Xenoturbella. Here we report the embryonic stages of Xenoturbella, and show that it is a direct developer without a feeding larval stage. This mode of development is similar to that of the acoelomorphs, supporting the newly proposed phylum Xenacoelomorpha and suggesting that the last common ancestor of the phylum might have been a direct developer.
Project description:BackgroundMitochondrial genome comparisons contribute in multiple ways when inferring animal relationships. As well as primary sequence data, rare genomic changes such as gene order, shared gene boundaries and genetic code changes, which are unlikely to have arisen through convergent evolution, are useful tools in resolving deep phylogenies. Xenoturbella bocki is a morphologically simple benthic marine worm recently found to belong among the deuterostomes. Here we present analyses comparing the Xenoturbella bocki mitochondrial gene order, genetic code and control region to those of other metazoan groups.ResultsThe complete mitochondrial genome sequence of Xenoturbella bocki was determined. The gene order is most similar to that of the chordates and the hemichordates, indicating that this conserved mitochondrial gene order might be ancestral to the deuterostome clade. Using data from all phyla of deuterostomes, we infer the ancestral mitochondrial gene order for this clade. Using inversion and breakpoint analyses of metazoan mitochondrial genomes, we test conflicting hypotheses for the phylogenetic placement of Xenoturbella and find a closer affinity to the hemichordates than to other metazoan groups. Comparative analyses of the control region reveal similarities in the transcription initiation and termination sites and origin of replication of Xenoturbella with those of the vertebrates. Phylogenetic analyses of the mitochondrial sequence indicate a weakly supported placement as a basal deuterostome, a result that may be the effect of compositional bias.ConclusionThe mitochondrial genome of Xenoturbella bocki has a very conserved gene arrangement in the deuterostome group, strikingly similar to that of the hemichordates and the chordates, and thus to the ancestral deuterostome gene order. Similarity to the hemichordates in particular is suggested by inversion and breakpoint analysis. Finally, while phylogenetic analyses of the mitochondrial sequences support a basal deuterostome placement, support for this decreases with the use of more sophisticated models of sequence evolution.
| S-EPMC2697986 | biostudies-literature
Project description:The genome of Xenoturbella bocki
Project description:Two types of endosymbiotic bacteria were identified in the gastrodermis of the marine invertebrate Xenoturbella bocki (Xenoturbellida, Bilateria). While previously described Chlamydia-like endosymbionts were rare, Gammaproteobacteria distantly related to other endosymbionts and pathogens were abundant. The endosymbionts should be considered when interpreting the poorly understood ecology and evolution of Xenoturbella.