Project description:Auxotrophs are unable to synthesize all the metabolites essential for their metabolism and rely on others to provide them. They have been intensively studied in laboratory-generated and -evolved mutants, but emergent adaptation mechanisms to auxotrophy have not been systematically addressed. Here, we investigated auxotrophies in bacteria isolated from Arabidopsis thaliana leaves and found that up to half of the strains have auxotrophic requirements for biotin, niacin, pantothenate and/or thiamine. We then explored the genetic basis of auxotrophy as well as traits that co-occurred with vitamin auxotrophy. We found that auxotrophic strains generally stored coenzymes with the capacity to grow exponentially for 1-3 doublings without vitamin supplementation; however, the highest observed storage was for biotin, which allowed for 9 doublings in one strain. In co-culture experiments, we demonstrated vitamin supply to auxotrophs, and found that auxotrophic strains maintained higher species richness than prototrophs upon external supplementation with vitamins. Extension of a consumer-resource model predicted that auxotrophs can utilize carbon compounds provided by other organisms, suggesting that auxotrophic strains benefit from metabolic by-products beyond vitamins.
Project description:Objective: Physical exercise and vitamin E are considered effective treatments of nonalcoholic fatty liver and other metabolic diseases. However, vitamin E has also been shown to interfere with the adaptation to exercise training, in particular for the skeletal muscle. Here, we studied the hypothesis that vitamin E also interferes with the metabolic adaptation of the liver to acute exercise. Methods: Male C57BL6/N mice were fed either control or vitamin E (α-tocopherol)- supplemented antioxidant diet during four weeks before being subjected to a non-exhaustive treadmill run. We assessed the acute transcriptional response of the liver as well as plasma corticosterone and free fatty acid (FFA) concentrations and monitored respiration in the exercising mice. Results: Vitamin E counteracted exercise-induced hepatic inflammation and altered the metabolic adaptation of the liver on the level of gene transcription. Vitamin E interfered with the upregulation of key metabolic regulators and caused a paradoxical increase in transcripts involved in lipid and cholesterol synthesis, processes negatively regulated by FFA and usually suspended during physical exercise. Whole-body energy consumption as well as corticosterone levels and signalling were similar, arguing against acute differences in fatty acid oxidation or glucocorticoid action. Conclusions: Our results show that vitamin E supplementation alters the inflammatory and transcriptional response of the liver to physical exercise. These effects of vitamin E could, on the long run, result in an impaired adaptation of the liver to physical exercise. Since exercise is clearly beneficial for general health and in reducing inflammation and dyslipidemia in nonalcoholic fatty liver disease, the interference of vitamin E with these processes may speak for a cautious use as dietary supplement.
Project description:Our findings demonstrated how phospholipid metabolism enabled metabolic transformation through an epigenetic modification, illuminating an underappreciated metabolic intersection for environmental adaptation in eukaryotic cells.
Project description:Propionibacterium freudenreichii (PFR) DSM 20271 is a bacterium known for its ability to thrive in diverse environments and produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271 to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably B12 vitamin, pseudovitamin-B12, propionate and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, TCA cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for sensing and adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications.
Project description:Our findings demonstrated how phospholipid metabolism enabled metabolic transformation through an epigenetic modification, illuminating an underappreciated metabolic intersection for environmental adaptation in eukaryotic cells.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response.
Project description:Exoproteomics of Hopland soil isolates. Metabolic trait to efficiently utilize plant polymers provides the energy-expensive microbial adaptation to survive in low carbon availability soil.
Project description:Rapidly proliferating tumors are exposed to a hypoxic microenvironment due to their density, high metabolic consumption, and interruptions in blood flow due to immature angiogenesis. Cellular responses to hypoxia promote highly malignant and metastatic behavior, as well as a chemotherapy-resistant state. In order to better understand the complex relationships between hypoxic adaptations and cancer progression, we studied the dynamic proteome responses of glioblastoma cells exposed to hypoxia via an innovative approach: quantification of newly synthesized proteins using heavy stable-isotope arginine labeling combined with accurate assessment of cell replication by quantification of the light/heavy arginine ratio of peptides in histone H4. We found that hypoxia affects cancer cells in multiple intertwined ways: inflammation, typically with over-expressed glucose transporter (GLUT1), DUSP4/ MKP2, and RelA proteins; a metabolic adaptation with overexpression of all glycolytic pathway enzymes for pyruvate/lactate synthesis; and the EMT (epithelial-mesenchymal transition) and cancer stem cell (CSC) renewal with characteristic morphological changes and mesenchymal/CSC protein expression profiles. For the first time, we identified the vitamin B12 transporter protein TCN2, which is essential for one-carbon metabolism, as being significantly downregulated. Further, we found, by knockdown and overexpression experiments, that TCN2 plays an important role in controlling cancer cell transformation towards the highly aggressive mesenchymal/CSC stage; low expression of TCN2 has an effect similar to hypoxia, while high expression of TCN2 can reverse it. We conclude that hypoxia induces sequential metabolic responses of one-carbon metabolism in tumor cells.