Project description:we generated DPHL v2 from 1608 DDA-MS data acquired using Orbitrap mass spectrometers. The data included 586 DDA-MS newly acquired from 17 tissue types, while 1022 files were derived from DPHL v1. DPHL v2 thus comprises data from 24 sample types, including several cancer types . We generated four variants of DPHL v2 to include semi-tryptic peptides and protein isoforms.
Project description:We describe an optimized microarray method for identifying genome-wide CpG island methylation called Microarray-based Methylation Assessment of Single Samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimised combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared to a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison to previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation. Keywords: Methylation genomic hybridizations.
Project description:This paper presents a teleoperation system of robot grasping for undefined objects based on a real-time EEG (Electroencephalography) measurement and shared autonomy. When grasping an undefined object in an unstructured environment, real-time human decision is necessary since fully autonomous grasping may not handle uncertain situations. The proposed system allows involvement of a wide range of human decisions throughout the entire grasping procedure, including 3D movement of the gripper, selecting proper grasping posture, and adjusting the amount of grip force. These multiple decision-making procedures of the human operator have been implemented with six flickering blocks for steady-state visually evoked potentials (SSVEP) by dividing the grasping task into predefined substeps. Each substep consists of approaching the object, selecting posture and grip force, grasping, transporting to the desired position, and releasing. The graphical user interface (GUI) displays the current substep and simple symbols beside each flickering block for quick understanding. The tele-grasping of various objects by using real-time human decisions of selecting among four possible postures and three levels of grip force has been demonstrated. This system can be adapted to other sequential EEG-controlled teleoperation tasks that require complex human decisions.