Project description:Ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. The biochemical mechanism for the SSU processome in 18S rRNA processing and maturation has been extensively studied, however, how the SSU processome components enter to the nucleolus has not been systematically investigated. Here we checked the nucleolar localization of 50 human SSU processome components and find that UTP3 and other 24 proteins enter to the nucleolus autonomously. For the remaining 25 proteins we find that UTP3/SAS10 assists the nucleolar localization of five proteins, namely MPP10, UTP25, EMG1 and two UTP-B components UTP12 and UTP13, and this ferry function of UTP3 is conserved in zebrafish. We also find that knockdown of human UTP3 impairs the cleavage at A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes an accumulation of the processed products containing the 5′ETS, supporting the crucial role of UTP3 in mediating the 5′ETS processing and degradation. Moreover, UTP3 directly interacts with and delivers EXOSC10 into the nucleolus, suggesting that UTP3 may play a direct role in recruiting the nuclear exosome to the SSU processome for degradation of the processed 5′ETS. These findings lay the ground for studying the mechanism of cytoplasm-to-nucleolus trafficking of the SSU processome components and the multifaceted roles of UTP3 during pre-rRNA processing.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Abstract - 18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. While this process is critical for ribosome quality control, the mechanisms underlying nonfunctional 18S rRNA turnover remain elusive, particularly in mammals. Here, we show that mammalian 18S NRD initiates through the integrated stress response (ISR) via GCN2. Nonfunctional 18S rRNA induces translational arrest at start sites. Biochemical analyses demonstrate that ISR activation limits translation initiation and attenuates collisions between scanning 43S preinitiation complexes and stalled nonfunctional ribosomes. The ISR promotes 18S NRD and 40S ribosomal protein turnover by RNF10-mediated ubiquitination. Ultimately, RIOK3 binds the resulting ubiquitinated 40S subunits and facilitates 18S rRNA decay. Overall, mammalian 18S NRD acts through GCN2, followed by ubiquitin-dependent 18S rRNA degradation involving the ubiquitin E3 ligase RNF10 and the atypical protein kinase RIOK3. These findings establish a dynamic feedback mechanism by which the GCN2-RNF10-RIOK3 axis surveils ribosome functionality at the translation initiation step.
2024-12-09 | MSV000096620 | MassIVE
Project description:Microbial eukaryotic 18S v4 region amplicon
| PRJNA646537 | ENA
Project description:Microbial prokaryotic 16S V4 amplicon and microbial eukaryotic 18S V4 amplicon in Lake Donghu