Project description:Formation of the eukaryotic ribosomal subunits follows a strict regime to assemble ribosomal proteins (r-protein) with ribosomal RNAs (rRNA) while removing internal (ITS) and external (ETS) transcribed rRNA spacers. During early stages of large subunit (LSU) formation, ITS2 together with six assembly factors forms the characteristic foot structure of early nuclear pre-LSU particles. Here, we address the function of this foot structure during early stages of ribosome assembly. We present cryo-EM structures from wild-type cells and cells depleted for the foot structure factor Rlp7. We show that compaction of domain I of the 25S rRNA is strictly dependent on the presence of foot factors, while domain II folds independently. Furthermore, Rlp7-depletion accumulated small subunit (SSU) processome intermediates prior A1 cleavage and compaction of the individual domains of the 18S rRNA, providing also novel insights into the SSU-assembly process. SILAC labeling and affinity purification of co-transcriptional assembled pre-ribosomes enabled us to resolve the assembly line of the r-proteins step by step. This showed that incorporation of r-proteins in eukaryotes neither follows the bacterial regime nor a strict linear co-transcriptional mode. Instead, seed r-proteins might structurally define the individual rRNA domains before their compaction and fixation in the context of the SSU processome.
Project description:Ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. The biochemical mechanism for the SSU processome in 18S rRNA processing and maturation has been extensively studied, however, how the SSU processome components enter to the nucleolus has not been systematically investigated. Here we checked the nucleolar localization of 50 human SSU processome components and find that UTP3 and other 24 proteins enter to the nucleolus autonomously. For the remaining 25 proteins we find that UTP3/SAS10 assists the nucleolar localization of five proteins, namely MPP10, UTP25, EMG1 and two UTP-B components UTP12 and UTP13, and this ferry function of UTP3 is conserved in zebrafish. We also find that knockdown of human UTP3 impairs the cleavage at A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes an accumulation of the processed products containing the 5′ETS, supporting the crucial role of UTP3 in mediating the 5′ETS processing and degradation. Moreover, UTP3 directly interacts with and delivers EXOSC10 into the nucleolus, suggesting that UTP3 may play a direct role in recruiting the nuclear exosome to the SSU processome for degradation of the processed 5′ETS. These findings lay the ground for studying the mechanism of cytoplasm-to-nucleolus trafficking of the SSU processome components and the multifaceted roles of UTP3 during pre-rRNA processing.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.