Project description:This study examined tolerance to hypoxia-induced pulmonary hypertension in yearling beef cattle raised at high elevation (7120 ft/2170m).
Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:The objective of our study was to assess the effect of rumen-protected niacin supplementation on the overall transcriptomics profile of liver tissue on growing Angus × Simmental steers and heifers. Consequently, the vasodilatory, detoxifying, and immune suppressor effects of niacin were evaluated in hepatocytes. After a 30-day supplementation period with rumen-protected niacin on normal weaned beef calves, we observed a significant list of benefits at the liver transcriptome level. Several metabolic pathways revealed positive effects of administration of rumen-protected niacin; for example, a decrease in lipolysis, apoptosis, inflammatory responses, atherosclerosis, oxidative stress, fibrosis, and vasodilation-related pathways. Therefore, results from this study could potentially promote supplementation of rumen-protected niacin on beef cattle backgrounding operations or new arrivals to a feedlot, especially during the acclimation period when the health status of growing beef cattle is usually compromised.
Project description:Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine. It has been shown to relieve the heat stress of beef cattle by improving antioxidant activity and rumen microbial protein synthesis, but the mechanism of CrPyr influencing rumen fermentation remains unclear. This study aimed to use metaproteomics technologies to investigate the bacterial protein function in rumen fluid samples taken from heat-stressed beef cattle treated with or without 60 g/d CrPyr.
Project description:Bovine Viral Diarrhea Virus (BVDV) is an endemic virus of North American cattle populations with significant economic and animal health impacts. While BVDV infection has a myriad of clinical manifestations, a unique and problematic outcome is the establishment of a persistently infected (PI) animal following in-utero viral infection. While it is well established that PI animals serve as a constant reservoir of BVDV, the mechanism for the maintained infection remains unknown despite multiple theories. The purpose of this study was to use transcriptome analysis to further define long term immune status of adult PI cattle and offer insight into the potential mechanistic establishment of persistent BVDV infection, in utero. Peripheral blood mononuclear cells were collected from PI beef cattle (N=6) and uninfected controls (N=6) for targeted RNAseq analysis conducted using 54 genes of interest and followed by pathway enrichment analysis. Analysis revealed 29 differentially expressed genes (FDR < 0.05, fold change > 2) representing 14 significant KEGG pathways between PI and control animals (FDR < 0.05). Transcriptome changes indicate chronic upregulation of interferon gamma (IFNG) with unexpected expression of related genes, suggesting a maintained stimulation of the PI immune system resulting in virus-mediated dysregulation of immune function.