Project description:Liver disease alters the gut microenvironment by liver-gut axis. To investigate the composition and transcriptome changes of various intestinal cell populations in liver cirrhosis, we delineated a single-cell atlas of the colon from mice treated CCl4 for 6 weeks.
Project description:Gene profiling of hepatocytes in early and advanced cirrhotic Rats Two-condition experiment, Advanced cirrhosis vs Control liver, Advanced cirrhosis vs Early cirrhosis. Biological replicates: 5 Advanced cirrhosis, 5 Early cirrhosis, 5 control liver. Each hepatocyte was isolated independently. One replicate per array.
Project description:To evaluate the potential of circulating microRNAs as biomarkers for early hepetocellular carcinoma (HCC) screening, plasma miRNA profiles were compared between patients with HCC and liver cirrhosis (LC).
Project description:Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among the patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care, reduce morbidity and mortality. This is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to detect differentially expressed proteoforms (DEPs) in the plasma of patients with cirrhosis with the goal to identify candidate biomarkers of disease progression. 663 DEPs were identified across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the progressive stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in numerous metabolic, oxidative, immunological, and hematological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Project description:Cirrhosis and cancers of the upper digestive tract, colorectal and ENT share common risk factors. Liver cirrhosis can change the elimination of cancer drugs.
Precise data on management and outcome of patients with liver cirrhosis undergoing chemotherapy are lacking. Most patients have been excluded from clinical trials evaluating conventional therapies.
The study of tolerance, side effects, and outcome in patients with cirrhosis could help improve chemotherapy management for better tolerance and efficacy.
The main objective is to estimate the frequency of liver cirrhosis among patients evaluated in CPR for ENT, upper digestive or colorectal cancer.
Secondary objective includes the evaluation ofthe impact of cirrhosis on the management of chemotherapy by comparing cirrhotic patients’ outcomes with a control group of matched non-cirrhotic patients.
Project description:Liver cirrhosis is one of the leading causes of decreased life expectancy worldwide. However, the molecular mechanisms underlying the development of liver cirrhosis remain unclear. In this study, we performed a comprehensive analysis using transcriptome sequencing to explore the genes, pathways, and interactions associated with liver cirrhosis. We performed transcriptome sequencing of blood samples from patients with cirrhosis and healthy controls (1:1 matched for sex and age). For transcriptome analysis, we screened for differentially expressed miRNAs and mRNAs, analyzed mRNAs to identify possible core genes and pathways, and performed co-analysis of miRNA and mRNA sequencing results. And we validated differentially expressed microRNA (miRNA) and mRNAs using real-time quantitative polymerase chain reaction. Using a systems biology framework, We identified miRNAs and mRNAs that were differentially expressed in the blood of cirrhotic patients and healthy controls. And explored associated pathways as well as disease-specific networks.