Project description:Structure of manure resistome and associated mobilome in the context of the risk assessment of drug resistance transmission to crops
Project description:Long time considered as « junk DNA », the evolutive force of transposable elements (TEs) is now well established and TEs contribute strongly to eukaryote genome plasticity. However, it is difficult to fully characterize the mobile part of a genome, or active mobilome, and tracking TE activity remains challenging. He we have applied the detection of extrachromosomal circular DNA (mobilome-seq) as a diagnostic for plant TE activity on Poplar mersitems from WT and ddm1 RNAi plants grown in normal or hydric stress conditions.
Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.
Project description:The non-typhoidal Salmonella enterica serotype Heidelberg is a major foodborne pathogen primarily transmitted to humans through contaminated poultry products. Current control measures emphasize novel approaches to mitigate Salmonella Heidelberg colonization in poultry and the contamination of poultry products, thereby reducing its transmission to humans. This study highlight that commensal E. coli 47-1826 can potentially be used to control of S. Heidelberg 18-9079 in poultry