Project description:Purpose:to identify the response of Frankia sp.strain CcI6 to salt and osmotic stress. Frankia sp.strain CcI6 was exposed to salt and osmotic stress for seven days. RNAseq analysis was carried out to ge an insight into the response of the bacterium under salt and osmotic stress conditons
Project description:Comparative transcriptome profiles of cotton (G. hirsutum L. cv. Bikaneri narma) during boll development stages (0, 2, 5 and 10 dpa) under bollworm infested biotic stress. Cotton is one of the most commercially important fibre crops in the world and used as a source for natural textile fibre and cottonseed oil. The biotic stress is one of the major constraints for crop production. Cotton bollworm (Helicoverpa armigera) is one the major insect pest in cotton and drastically damages the cotton boll. To decipher the molecular mechanisms involved in cotton boll/fibre cell development, transcriptome analysis has been carried out by comparing G. hirsutum L cv. Bikaneri narma cotton boll samples induced by biotic stress (bollworm infested) and that their respective control cotton bolls collected under field conditions. Cotton bolls were collected at fibre initiation (0, 2 dpa/days post anthesis) and elongation (5, 10 dpa) stages for both control and biotic stress condition and gene expression profiles were analyzed by Affymetrix cotton GeneChip Genome array.
2015-03-01 | GSE55511 | GEO
Project description:biotic stress and hormone treatment transcriptome data
Project description:Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.