Project description:The dataset represents the proteome analysis of 7 sampling dates during the phytoplankton bloom in the Helgoland Roads in the North Sea at the long-term research station ‘Kabeltonne’ (54°11'N 7°54'E, DEIMS.ID https://deims.org/1e96ef9b-0915-4661-849f-b3a72f5aa9b1) in 2018.
Project description:Genome-wide DNA methylation analysis of COVID-19 severity using the Illumina HumanMethylationEPIC microarray platform to analyze over 850,000 methylation sites, comparing COVID-19 patients during and one year after infection, using whole blood tissue.
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp). 15 samples examined in total from important plume zones of the aquifer sampled in Feb. 2006, Sep. 2008 and Jun. 2009 (5 every year of sampling).
Project description:We investigated ecotoxicological effects and toxicogenomic responses in fathead minnows (Pimephales promelas) exposed to an environmentally-relevant concentration (0.83 mg/L) of the munitions compound cyclotrimethylenetrinitramine (RDX) in one year and multi-generational assays. In the one year assay, RDX effects were discerned by comparing breeding groups reared in control or RDX-exposure conditions for one year. RDX had no detectable effect on gonad-somatic index, or condition factor in females assayed at 1 day and at 1, 3, 6, 9, and 12 months, however the liver-somatic index was significantly increased versus controls only at the 12 month time point. RDX had no effect on live-prey capture rates at all time points assayed and no significant impacts on egg production, fertilization or hatch success in the 1-year exposure trial. Genomic analyses indicated that RDX exposure caused limited differential expression of transcripts within time points and no functional conservation of effects indicative of RDX exposure among time points for either brain or liver tissues in the one year exposure. In the multi-generational assay, the effects of acute (96h) exposure to RDX were compared in fish reared to the F2 generation in either control or RDX-exposure conditions. The RDX-reared fish were not observed to have appreciably enhanced RDX tolerance versus the control-reared fish. However, significant differences in gene expression were observed among the control and RDX-reared fish related to neuro-excitatory glutamate metabolism, sensory signaling and processes in neurological development. In total, our results indicate that exposure to an RDX concentration approximating maximum levels observed in the field (0.83 mg/L) caused limited impacts in fathead minnows in a one year exposure, however caused altered expression in genes involved in neural function in a multi-generational exposure. Adult fathead minnows were exposed to 0.83 mg/L (0.15 mg/L standard deviation) in experimental units including 2 male and 4 fish. Five replicate males were randomly sampled with replacement from each of 8 control and 8 RDX-exposed experimental units at 1d, 1mo, 3mo, 6mo, 9mo and 12mo sampling periods. Brain tissue was investigated for differential expression in response to RDX exposure. Data were analyzed in 3 separate investigations. First, the Reference vs Reference data were analysed to determine an empirical false positive detection rate. Next, in order to meet milestones set up by our upper management, we were forced to generate results prior to the end of the bioassay. Therefore, we investigated gene expression among Control and RDX-exposed fish in the 1 day - 6 month sampling periods. Investigation of gene expression among the control and RDX-exposed fish for the 9 month and 12 month time periods were investigated separately.
Project description:We investigated ecotoxicological effects and toxicogenomic responses in fathead minnows (Pimephales promelas) exposed to an environmentally-relevant concentration (0.83 mg/L) of the munitions compound cyclotrimethylenetrinitramine (RDX) in one year and multi-generational assays. In the one year assay, RDX effects were discerned by comparing breeding groups reared in control or RDX-exposure conditions for one year. RDX had no detectable effect on gonad-somatic index, or condition factor in females assayed at 1 day and at 1, 3, 6, 9, and 12 months, however the liver-somatic index was significantly increased versus controls only at the 12 month time point. RDX had no effect on live-prey capture rates at all time points assayed and no significant impacts on egg production, fertilization or hatch success in the 1-year exposure trial. Genomic analyses indicated that RDX exposure caused limited differential expression of transcripts within time points and no functional conservation of effects indicative of RDX exposure among time points for either brain or liver tissues in the one year exposure. In the multi-generational assay, the effects of acute (96h) exposure to RDX were compared in fish reared to the F2 generation in either control or RDX-exposure conditions. The RDX-reared fish were not observed to have appreciably enhanced RDX tolerance versus the control-reared fish. However, significant differences in gene expression were observed among the control and RDX-reared fish related to neuro-excitatory glutamate metabolism, sensory signaling and processes in neurological development. In total, our results indicate that exposure to an RDX concentration approximating maximum levels observed in the field (0.83 mg/L) caused limited impacts in fathead minnows in a one year exposure, however caused altered expression in genes involved in neural function in a multi-generational exposure. Adult fathead minnows were exposed to 0.83 mg/L (0.15 mg/L standard deviation) in experimental units including 2 male and 4 fish. Five replicate males were randomly sampled with replacement from each of 8 control and 8 RDX-exposed experimental units at 1d, 1mo, 3mo, 6mo, 9mo and 12mo sampling periods. Liver tissue was investigated for differential expression in response to RDX exposure.
Project description:We take the two year old plant for sampling. Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa newly formed developing xylem and lignified xylem. We used microarrays to detail the global programme of gene expression in newly formed developing xylem and lignified xylem.