Project description:To determine the global gene occupancy by Wiskott - Aldrich syndrome Protein (WASP) we perform ChIP-seq assay in two lymphoblastoid cell lines. We identify WASP-enriched genes, including several WASP-interaction genes previously reported; in addition, our results suggest the implication of WASP in diverse cellular process
Project description:To investigate a role of nuclear WASp in T cell development we performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-Seq) in thymocytes and spleen CD4+ T cells. To pre-process raw ChIP-Seq data, the total number of reads were normalized and aligned against the mouse genome. WASp was enriched at transcription start sites of a large number of protein-coding genes. Many of the WASp-enriched genes were associated with RNA Polymerase II-enriched genes and active epigenetic marks of transcription; H3K4m3, H3K9a, H3K27a, and with the epigenetic mark for active enhancers H3K4m1. To study the distribution of overactive WASpI296T in the thymocyte genome and to identify regions enriched in WASpI296T binding, we performed second round of ChIP-Seq analysis using the WASp F-8 antibody. To detect differences in gene enrichment between thymocytes expressing wildtype WASp or WASpI296T, we applied stringent conditions and subtracted common genes between the two samples. Using this approach, we identify 70 WASpI296T-enriched genes. Functional clustering of these genes revealed that WASpI296T was associated with RNA Polymerase II genes in 11 functional groups of genes.thymocytes and spleen CD4+ T cells. WASp was enriched at transcription start sites of a large number of protein-coding genes.
Project description:Mutations in the immune-specific actin regulator WASp induce a proinflammatory state in myeloid cells, whose underlying causes remain poorly defined. Here, we applied microfabricated tools that mimic tissue mechanical forces to explore the role of WASp in connecting mechano-sensing to the activation of inflammatory responses in macrophages. We show that WASp-deficient macrophages carry nuclear structure alterations and undergo increased blebbing and nuclear rupture when exposed to mechanical confinement. High-resolution imaging indicates that WASp drives the formation of protective perinuclear actin structures in response to confinement. Functionally, WASp null macrophages respond to mechanical confinement by inducing a transcriptional profile consistent with the release of immunogenic DNA in the cytosol. The proinflammatory state of mechanically confined WASp-deficient macrophages depends, in part, on the cGAS-STING pathway of cytosolic DNA sensing. Together, these data uncover a WASp-dependent mechanism to restrict activation of inflammatory signalling in tissue macrophages and provide hints to target unabated inflammation in Wiskott-Aldrich Syndrome.
Project description:Mutations in the immune-specific actin regulator WASp induce a proinflammatory state in myeloid cells, whose underlying causes remain poorly defined. Here, we applied microfabricated tools that mimic tissue mechanical forces to explore the role of WASp in connecting mechano-sensing to the activation of inflammatory responses in macrophages. We show that WASp-deficient macrophages carry nuclear structure alterations and undergo increased blebbing and nuclear rupture when exposed to mechanical confinement. High-resolution imaging indicates that WASp drives the formation of protective perinuclear actin structures in response to confinement. Functionally, WASp null macrophages respond to mechanical confinement by inducing a transcriptional profile consistent with the release of immunogenic DNA in the cytosol. The proinflammatory state of mechanically confined WASp-deficient macrophages depends, in part, on the cGAS-STING pathway of cytosolic DNA sensing. Together, these data uncover a WASp-dependent mechanism to restrict activation of inflammatory signalling in tissue macrophages and provide hints to target unabated inflammation in Wiskott-Aldrich Syndrome.