Project description:In this study we present a matrix to characterise cetaceans’ respiratory microbiome, using fhort-finned pilot whale (Globicephala macrorhynchus) as model species
Project description:This series includes 3 microarrays used to detect SWCoV1, a novel group III coronavirus in Delphinapterus leucas (Beluga whale) liver. The series includes 2 control whale livers and 1 whale liver containing SWCoV1.
Project description:We investigate the participation of miRNAs in the cell response to the mitochondrial dysfunction associated with m.3243A>G mutation in mitochondrial DNA (mtDNA), which is the most common cause of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome.Through small-RNA sequencing and in silico analysis, we identified 246 differentially-expressed in a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA), with 126 being up-regulated and 120 down-regulated. The enrichment analysis of Gene Ontology (GO) terms revealed that target genes for dysregulated miRNAs were involved in muscle and nervous system development, heart development, and signaling pathways controlling cardiac events.These data suggest that the miRNA program triggered by the MELAS m.3243A>G mutation could explain for some of the clinical manifestations of the MELAS syndrome.
Project description:The development of mitochondrial medicine is greatly impaired by the lack of knowledge and identification of efficient therapeutic routes targeting mitochondria. To better understand the pathophysiology of MELAS syndrome, neuronal cybrid cells, carrying different mutant loads of the m.3243A>G mutation, were investigated by a metabolomics and transcriptomics combined approach. Specific signatures, identifying MELAS biochemical biomarkers, disclosed the glutamate pathway as a culprit mechanism, establishing a strong correlation between glutamate concentrations and the m.3243A>G heteroplasmy levels. Transcriptomic analyses further revealed peculiar gene clusters, including glutamate, gamma-aminobutyric acid (GABA) and tricarboxylic acid (TCA) cycle pathways. These results were supported by post-mortem brain tissue analysis of a MELAS patient, confirming the dysregulation of the glutamate metabolic pathway. Ketogenic diet known to reduce glutamate toxicity, induced a significant reduction of glutamate level after 48h of ketone body treatment, improved mitochondrial functions alleviating the accumulation of several intermediate metabolites of the TCA cycle in MELAS cells. Thus, the integrated approach using a multi-OMICs strategy on MELAS cybrid cells, disclosed novel insights in the mitochondrial energy failure, identifying glutamate as a potential biomarker of the disease, while highlighting ketogenic diet, a nutrition based strategy, to treat MELAS patients