Project description:Four small RNA libraries from two contrasting sweet sorghum genotypes were sequenced. In this study, One hundred and ninety-five conserved miRNAs belonging to 56 families and 25 putative novel miRNAs from 28 precursors were identified, among which 38 conserved and 24 novel miRNAs were differentially expressed under Cd stress and/or between H18 and L69. Two groups of them: miR169p/q-nov_23 and miR408 were further focused through the coexpression analysis and might be involved in Cd transport, cytoskeleton activity and cell wall construction by regulating their targets. This study presents new insights into the regulatory roles of miRNAs in Cd accumulation and tolerance in sweet sorghum and will help to develop high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum through molecular breeding and/or genetic engineering approaches.
Project description:• To dissect how the genes are dynamically and differentially expressed during fruit development in sweet orange, a comprehensive transcriptomic study was performed in a pleiotropic mutant (MT) and its wild type (WT). • The detection of the fruit transcriptomic changes was conducted at five stages of fruit development by deep sequencing; the obtained millions of reliable tags were mapped on orange unigenes and subjected to cluster analysis and functional categorization. Sugar and organic acid contents were determined based on the prediction of differential biological processes. • The global clustering analysis revealed a total of 14 expression patterns for the genes involved in fruit development of sweet orange. More than 94% of the genes showed differential expression during fruit development. Comparative transcripts profiling between WT and MT revealed that between 410 and 634 genes were significantly differentially expressed at the five stages. Functional categorization indicated that TCA cycle, carotenoid biosynthesis, and pentose phosphate pathway (OPP) were among the most regulated pathways. • This study provided a dynamic-view of the transcriptome changes during fruit ripening in sweet orange; the results highlighted a set of molecular processes involved in the formation of the mutation trait in the orange fruits. Investigate the transcriptome changes during five fruit developmental stages of two sweet orange genotypes
Project description:Salt stress has become one of the main abiotic stress factors restricting agricultural production worldwide. Sweet sorghum is an important salt and drought tolerant feed and energy crop. Its salt tolerance mechanism has not been widely studied. With the development of transcriptome sequencing technology, it is possible to study the molecular mechanism of sweet sorghum salt tolerance. The purpose of this study was to further reveal the potential salt-tolerant molecular mechanisms of sweet sorghum through high-throughput sequencing analysis of the transcriptome. Finally, through high-throughput sequencing, we read approximately 54.4G of raw base and 53.7G of clean base in total, and used FastQC to assign a quality score (Q) to each base in the read using a similar phred algorithm, Analysis shows that the data is highly credible. We conclude that RNA-based transcriptome characterization will accelerate the study of genetics and molecular biology of sweet sorghum salt tolerance mechanisms and provide a framework for this.
Project description:In this study ten sweet cherry cultivars from Italy were characterized through proteomic analysis of the corresponding fruits hand-harvested at the commercial ripening stage (89 BBCH scale). A TMT10plex-based MS approach was employed to highlight molecular differences between fruit ecotypes in terms of key components influencing fruit quality and allergenic potential. Multivariate analysis of total quantitative data outlined cultivar differences and phenotypic relationships between investigated cultivars. These data could successfully integrate genetic findings obtained with DNA fingerprinting techniques for the elucidation of molecular differences and relationships between fruit ecotypes.
Project description:Transcriptional profiling of sweet corn response to plant density (crowding stress). Determine the extent to which hybrid and environment influences crowding stress response and identify crowding stress transcriptional response in sweet corn
Project description:we performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of sweet potato challenged with Fob using Illumina Hiseq technology. A total of 89,944,188 clean reads were generated and were assembled into 101,988 unigenes with an average length of 666bp, 62,605(61.38%) of them were functional annotated in the non-redundant(nr) protein database from NCBI by using BLASTX with a cut-off E-value of 10-5, and COG,GO and KEGG annotations were examined for better understand their functions. Five DGE libraries were constructed from the sweet potato cultivar JS57 (high resistance) and XZH (high susceptible) challenged with pathogenic and Nonpathogenic Fob. The differentially expressed genes including up- and down-regulation in five libraries were identified and calculated based on comparisons of transcriptomes, showing differences in gene expression profiles among the samples. A set of differentially expressed genes involved disease response were identified, including 40 WRKY and seven NAC transcription factors, four resistance genes, 22 pathogenesis-related genes, and six genes involved in SA signal pathway. Our study is the first to provide the transcriptome sequence resource of sweet potato challenged with pathogenic and non-pathogenic Fob and demonstrate its digital expression profiling. We discovered a set of genes involved in disease resistance. These data provides comprehensive sequence resource of sweet potato for genetic and genomic studies and will accelerate the understanding of molecular mechanism of disease resistance.
Project description:The sweet taste receptor is a heterodimer of two class C G protein-coupled receptors (GPCRs), T1R2 and T1R3. While homologous structures of individual domains have been determined, the architecture of the full length T1R2-T1R3 dimer is unknown. Using random mutagenesis and cell sorting, we identify single point mutations and a C-terminal intracellular retention motif in human T1R2 that modulate surface expression and co-trafficking with T1R3 in a HEK293-derivative cell line. A comprehensive mutational scan of T1R2 based on surface expression of both subunits revealed conserved sites for T1R3 interactions, including surfaces on lobe 1 of the ligand binding domain, cysteine rich domain, and transmembrane helix 6. Using the mutational scan to guide modeling of the T1R2-T1R3 dimer predicts a twisted architecture that can explain how outwards motion of lobes 2 in the ligand-binding domains is translated into reorganization of transmembrane regions, and further predicts that extracellular loops 2 form continuous folded structures with the cysteine-rich domains near the dimer axis. These insights into the putative structural organization of the human sweet taste receptor have general implications for the mechanism of class C GPCRs.
Project description:The formation and development of storage roots is an intricate process regulated via a complex transcriptional regulatory network. To significantly advance our understanding of the molecular mechanisms governing storage root initiation and development in sweet potato, we performed a comprehensive analysis of transcriptome dynamics during root development.
Project description:• To dissect how the genes are dynamically and differentially expressed during fruit development in sweet orange, a comprehensive transcriptomic study was performed in a pleiotropic mutant (MT) and its wild type (WT). • The detection of the fruit transcriptomic changes was conducted at five stages of fruit development by deep sequencing; the obtained millions of reliable tags were mapped on orange unigenes and subjected to cluster analysis and functional categorization. Sugar and organic acid contents were determined based on the prediction of differential biological processes. • The global clustering analysis revealed a total of 14 expression patterns for the genes involved in fruit development of sweet orange. More than 94% of the genes showed differential expression during fruit development. Comparative transcripts profiling between WT and MT revealed that between 410 and 634 genes were significantly differentially expressed at the five stages. Functional categorization indicated that TCA cycle, carotenoid biosynthesis, and pentose phosphate pathway (OPP) were among the most regulated pathways. • This study provided a dynamic-view of the transcriptome changes during fruit ripening in sweet orange; the results highlighted a set of molecular processes involved in the formation of the mutation trait in the orange fruits.
Project description:We have used the citrus GeneChip array (GPL5731) to survey the transcription profiles of sweet orange in response to the bacterial pathogens Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii (Xaa). Xac is the causal agent of the citrus canker disease on a wide range of citrus species, including sweet oranges (Citrus sinensis). On the other hand, Xaa is pathogenic to Mexican lime (Citrus aurantifolia) only, and in sweet orange it triggers a defense response. In order to identify the genes induced during the defense response (Xaa-responsive genes) or citrus canker development (Xac-responsive genes), we conducted microarrays hybridization experiments at 6 and 48 hours after bacterial infiltration (habi). The analysis revealed that genes commonly modulated by Xac and Xaa are associated with basal defenses normally triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, Xac-infected leaves showed considerable changes in the transcriptional profiles of defense-, cell wall-, vesicle trafficking- and cell growth-related genes between 6 and 48 habi. This is consistent with the notion that Xac suppresses host defenses near the beginning of the infection and simultaneously changes the physiological status of the host to promote cell enlargement and division. Finally, Xaa triggered a MAP kinase signaling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defense genes. Keywords: Comprehensive transcriptional analysis of the Citrus-Xanthomonas interaction Adult leaves of sweet orange were infiltrated with the bacterial suspensions or water (mock control). Two stages were selected after bacterial infiltration for RNA extraction and hybridization on Affymetrix microarrays. In total, these experiments consist of two biological replicates of six samples: water-infiltrated leaves, Xaa-infiltrated leaves and Xac-infiltrated leaves, at both 6 and 48 (habi).