Project description:Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic disorders characterized by ineffective blood cell production and a high risk of progression to acute myeloid leukemia (AML). CD34+ hematopoietic stem and progenitor cells (HSPCs) play a critical role in the pathophysiology of MDS, yet the proteomic changes underlying the disease remain poorly characterized. This project focuses on performing comprehensive quantitative proteomic profiling of CD34+ cells isolated from the bone marrow of MDS patients and healthy controls. By leveraging advanced mass spectrometry and quantitative proteomics techniques, we aim to identify unbiased differences in protein expression and pathways between diseased and healthy cells. These findings will contribute to a deeper understanding of the molecular mechanisms driving MDS and may reveal potential biomarkers or therapeutic targets.
Project description:Early, low risk IPSS (International Prognostic Scoring System) myelodysplasia (MDS) is a heterogeneous disorder where the molecular and cellular haematopoietic defects are poorly understood. To gain insight into this condition, we analyzed gene expression profiles of marrow CD34+ progenitor cells from normal karyotype, low blast count MDS patients, age-matched controls and patients with non-MDS anaemia. The aim of the study was to further understanding of the cellular defect in MDS and to identify biomarkers of disease Keywords: Disease v normal
Project description:Early, low risk IPSS (International Prognostic Scoring System) myelodysplasia (MDS) is a heterogeneous disorder where the molecular and cellular haematopoietic defects are poorly understood. To gain insight into this condition, we analyzed gene expression profiles of marrow CD34+ progenitor cells from normal karyotype, low blast count MDS patients, age-matched controls and patients with non-MDS anaemia. The aim of the study was to further understanding of the cellular defect in MDS and to identify biomarkers of disease Experiment Overall Design: Bone marrow (BM) CD34 cells were purified from patients with MDS, non-MDS anemia and from normal donors. Total RNA was extracted from Tri-reagent and quality verified on by capillary electrophoresis (Agilent). RNA was amplified by the Affymetrix small sample protocol. cRNA was hybridised to Affymetrix U133A chips under standard conditions. Initial data was analysed in MAS 5.0
Project description:In order to gain insight into the poorly understood pathophysiology of the myelodysplastic syndromes (MDS), we have determined the gene expression profiles of the CD34+ cells of 55 MDS patients using the Affymetrix GeneChip U133 Plus2.0 platform Keywords: Disease v normal
Project description:Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal disorders characterized variably by the presence of peripheral cytopenias, bone marrow hypercellularity and dysplastic changes in the bone marrow. While MDS patients have an increased risk of progression to acute myeloid leukemia (AML), most MDS patients actually succumb to progressive bone marrow failure. Amongst patients classified as low-risk MDS, different clinical evolutions have been observed, with some patients remaining relatively stable for long periods of time (herein, stable MDS), while others show more progressive disease, with worsening cytopenias, and often increased transfusion requirements (herein, progressive MDS). Current risk stratification strategies fail to distinguish these two groups at diagnosis. We report here that these distinct behaviors are encoded at the epigenetic level and that examining DNA methylation profiles of low-risk MDS patients captures underlying differences between the two different groups. In this study, we identified 356 differentially methylated regions (DMRs) between stable and progressive low-risk MDS at the time of diagnosis. The number of DMRs was almost doubled at the time of progression (681 follow-up DMRs), and this was accompanied by an increase in the local variability at specific methylation regions, and an increase in heterogeneity over time. These findings reveal previously unrecognized epigenetic heterogeneity in low-risk MDS patients and opens the possibility for using epigenetic differences to help improve risk-stratification at diagnosis.
Project description:Lower-risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by early accumulation of somatic mutations in epigenetic factors and non-epigenetic factors that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms.
Project description:Lower-risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by early accumulation of somatic mutations in epigenetic factors and non-epigenetic factors that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms.