Project description:Saprophagous fly larvae interact with a rich community of bacteria in decomposing organic matter. Larvae of some species, such as the black soldier fly, can process a wide range of organic residual streams into edible insect biomass and thus produce protein as a sustainable component of livestock feed. The microbiological safety of the insects and substrates remains a point of concern. Substrate-associated bacteria can dominate the larval gut microbiota, but the larvae can also alter the bacterial community in the substrate. However, the relative importance of substrate type and larval density in bacterial community dynamics is unknown. We investigated four larval densities (0 [control], 50, 100, or 200 larvae per container [520 mL; diameter, 75 mm]) and three feed substrates (chicken feed, chicken manure, and camelina substrate [50% chicken feed, 50% camelina oilseed press cake]) and sampled the bacterial communities of the substrates and larvae at three time points over 15 days. Although feed substrate was the strongest driver of microbiota composition over time, larval density significantly altered the relative abundances of several common bacterial genera, including potential pathogens, in each substrate and in larvae fed chicken feed. Bacterial communities of the larvae and substrate differed to a higher degree in chicken manure and camelina than in chicken feed. This supports the substrate-dependent impact of black soldier fly larvae on bacteria both within the larvae and in the substrate. This study indicates that substrate composition and larval density can alter bacterial community composition and might be used to improve insect microbiological safety. IMPORTANCE Black soldier fly larvae can process organic side streams into nutritious insect biomass, yielding a sustainable ingredient of animal feed. In processing such organic residues, the larvae impact the substrate and its microbiota. However, their role relative to the feed substrate in shaping the bacterial community is unknown. This may be important for the waste management industry to determine whether pathogens can be controlled by manipulating the larval density and the timing of harvest. We investigated how the type of feed substrate and the larval density (number of larvae per container) interacted to influence bacterial community composition in the substrates and larvae over time. Substrate type was the strongest driver of bacterial community composition, and the magnitude of the impact of the larvae depended on the substrate type and larval density. Thus, both substrate composition and larval density may be used to improve the microbiological safety of the larvae as animal feed.
Project description:The present study was conducted to investigate the effect of graded levels of black soldier fly larvae (BSFL) (Hermetia illucens) meal and BSFL paste in extruded diets for Atlantic salmon (Salmo salar). A total of 1260 Atlantic salmon with 34 g of mean initial weight were randomly distributed into 21 fiberglass tanks and fed (n=3) with seven extruded isolipidic and isonitrogenous diets for seven weeks. The experimental diets consisted of a positive control diet based on fishmeal, soy protein concentrate, corn gluten, faba bean and fish oil (Control_1); three diets with increased levels of full lipid BSFL meal, substituting 6.25% (6.25_IM), 12.5% (12.5_IM) and 25% (25_IM) of the protein content of Control_1; two diets with increased levels of full lipid BSFL paste, substituting 3.7% (3.7_IP) and 6.7% (6.7_IP); and of protein from Control_1 and a negative a control with 0.84 % of formic acid (Control_2). We investigate the effect of diets on growth performance, mmune response and health.
Project description:Power of the crowd: substrate-dependent impact of black soldier fly larvae on bacterial community composition in substrate and larval gut
Project description:Larvae of the black soldier fly (BSF) can be used to convert organic waste into insect biomass for animal feed. In this process, they interact with microorganisms originating from the substrate, the insect and the environment. The substrate is the main determinant of the larval gut microbiota composition, but inoculation of the substrate with egg-associated bacteria can improve larval performance. We aimed to quantify the relative importance of substrate-associated and egg-associated microorganisms in BSF larval performance, bacterial abundance and bacterial community composition, when larvae were fed with chicken feed or chicken manure. For this, we inactivated substrate-associated microorganisms by autoclaving, or disinfected BSF eggs. Larval survival, weight and proportion of prepupae were determined on day 15. We collected substrate and larval samples on days 0 and 15 and performed 16S rRNA gene-targeted qPCR and amplicon sequencing. In both chicken feed and chicken manure, egg disinfection did not cause any difference in larval performance or overall microbiota composition. In contrast, in chicken manure, substrate-associated microorganisms increased larval biomass and sterilizing the substrate caused major shifts in microbiota. Thus, substrate-associated microorganisms impact not only larval microbiota but also larval performance, whereas egg-associated microorganisms have a minor role in the densities present.