Project description:Monitoring microbiome of wildfire smoke, including bacteria and fungi, using PUF disk-type passive and High-volume active air samplers, using ambient air samples from Toronto, Ontario and the Alberta Oil Sands Region
Project description:Data set for: https://doi.org/10.1021/acs.est.0c05522
"Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed"
Includes all .raw files from passive samples for the New Haven participants.
See supplemental excel for linking participants to groupings, etc.
Project description:Legionnaire’s Disease is a growing concern for the United States and Europe, with disease incidences rising 6-fold since 2002. These recorded cases are increasingly associated with antibiotic resistant Legionella pneumophila, the causative agent of Legionnaire’s Disease and overall Legionellosis. With this, the need to study L. pneumophilainfections has never been greater. Current methodology for Legionella pneumophila infection studies often revolves around either artificial administration using intranasal or intratracheal delivery, semi-authentic delivery using bioaerosols and individual delivery systems (i.e. nose cones), or the burgeoning field of authentic exposure scenarios using aerosol generating showerhead devices. Here, we developed an alternative method using a Madison Aerosol Chamber as a means of generating and delivering bioaerosols in mice. We show that bioaerosol delivery using the Aerosol Exposure Chamber is very effective at exposing mice to various doses of L. pneumophila. RNASeq analyses revealed a robust immune response to bioaerosol delivered L. pneumophila comprising of activations of classical markers of infection and inflammation, including Cxcl and Ccl family genes and Il-1β. Similar gene expression profiles were observed when animals were intranasally exposed to L. pneumophila. Intranasal delivery resulted in a shorter duration of activation of several genes, indicating a lack of realistic infection response. Taken together, this evidence shows that our system delivers similar, if not better, results than intranasal inoculation while allowing researchers to study bioaerosol generation and delivery mechanisms simultaneously, critical factors for studying Legionella pneumophila infection. Such a new approach will allow for more accurate investigations to understand the effects of inhaling to Legionella contaminated drinking water.
Project description:Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semivolatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semivolatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations, simulates nonlinear PUF uptake, and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, IL, during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds and confirming quasilinear uptake. Results indicate hourly, daily, and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify the importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding that PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%).
Project description:Background/objectivePolyurethane foam (PUF), a proven sampling medium for measuring air concentrations of organic compounds, is widely used in upholstered home furniture. We evaluated the potential utility of couch PUF as a passive sampler and as a reservoir for non-flame retardant semivolatile organic compounds (SVOCs).MethodsWe collected PUF samples from 13 California home couches, measured concentrations (CPUF) of 64 SVOCs at three different depths (i.e., top, top-middle, and middle from couch surfaces facing outward), and examined concentration changes with depth. To calculate the PUF-air partition coefficient (KPUF-air = CPUF/Cair = CPUF × Kdust-air/Cdust), we used the calculated dust-air partition coefficient (Kdust-air) with the octanol-air partition coefficient (Koa) and dust concentrations (Cdust) simultaneously collected and measured. We used KPUF-air to compute fugacity capacity of PUF and chemical mass distribution among various indoor compartments and PUF.ResultsAmong 29 detected compounds, 11 compounds were detected in more than 50% of the samples at all depths. Among the 11 compounds, concentrations of phenanthrene, 2-benzylideneoctanal, galaxolide, tonalide, and homosalate decreased with depth. Among the studied SVOCs, more than 20% of the total mass was distributed to couch PUF for phenol and compounds in skin-applied products (i.e., 2-benzylideoneoctanal, galaxolide, and homosalate).ConclusionsOur results showed that couch PUF can absorb many SVOCs and may be an important reservoir for some SVOCs. However, it may not be an effective passive sampling medium for those that have relatively high Koa values. Direct dermal contact with couch seats may be an important exposure route for non-users of skin-applied compounds.
Project description:Bioaerosols consist of airborne particles of biological origin. They play an important role in our environment and may cause negative health effects. The presence of biological aerosol is typically determined using active samplers. While passive bioaerosol samplers are used much less frequently in bioaerosol investigations, they offer certain advantages, such as simple design, low cost, and long sampling duration. This review discusses different types of passive bioaerosol samplers, including their collection mechanisms, advantages and disadvantages, applicability in different sampling environments, and available sample elution and analysis methods. Most passive samplers are based on gravitational settling and electrostatic capture mechanism or their combination. We discuss the agar settle plate, dustfall collector, Personal Aeroallergen Sampler (PAAS), and settling filters among the gravity-based samplers. The described electrostatics-based samplers include electrostatic dust cloths (EDC) and Rutgers Electrostatic Passive Sampler (REPS). In addition, the review also discusses passive opportunity samplers using preexisting airflow, such as filters in HVAC systems. Overall, passive bioaerosol sampling technologies are inexpensive, easy to operate, and can continuously sample for days and even weeks which is not easily accomplished by active sampling devices. Although passive sampling devices are usually treated as qualitative tools, they still provide information about bioaerosol presence and diversity, especially over longer time scales. Overall, this review suggests that the use of passive bioaerosol samplers alongside active collection devices can aid researchers in developing a more comprehensive understanding of biological presence and dynamics, especially over extended time scales and multiple locations.