Project description:Low coverage whole genome sequencing of samples from individuals from Friuli Venezia Giulia, an Italian genetic isolate population.
| EGAS00001000252 | EGA
Project description:Genome sequences of 9 Grapevine Pinot gris virus (GPGV) isolates from Friuli Venezia Giulia region
Project description:Low coverage whole genome sequencing of samples from individuals from Friuli Venezia Giulia, an Italian genetic isolate population.
Project description:Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves. Using 142,840 genome-wide SNPs, this dataset was used in the identification of breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes.
Project description:Global warming is causing plastic and evolutionary changes in the phenotypes of ectotherms. Yet, we have limited knowledge on how the interplay between plasticity and evolution shapes thermal responses and underlying gene expression patterns. We assessed thermal reaction norm patterns across the transcriptome and identified associated molecular pathways in northern and southern populations of the damselfly Ischnura elegans. Larvae were reared in a common garden experiment at the mean summer water temperatures experienced at the northern (20 °C) and southern (24 °C) latitudes. This allowed a space-for-time substitution where the current gene expression levels at 24 °C in southern larvae are a proxy for the expected responses of northern larvae under gradual thermal evolution to the predicted 4 °C warming. Most differentially expressed genes showed fixed differences across temperatures between latitudes, suggesting that thermal genetic adaptation will mainly evolve through changes in constitutive gene expression. Northern populations also frequently showed plastic responses in gene expression to mild warming, while southern populations were much less responsive to temperature. Thermal responsive genes in northern populations showed to a large extent a pattern of genetic compensation, i.e. gene expression that was induced at 24 °C in northern populations remained at a lower constant level in southern populations, and were associated with metabolic and translation pathways. There was instead little evidence for genetic assimilation of an initial plastic response to mild warming. Our data therefore suggest that genetic compensation rather than genetic assimilation may drive the evolution of plasticity in response to mild warming in this damselfly species.