Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease. Complete haplotype phasing of 2 loci (MHC and KIR) in 1 human cell line.
Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease.
Project description:Copy number variations (CNVs) constitute the largest portion of the human genome variation. We determined a genome-wide high resolution SNP/CNV haplotype structure of Asians, by analyzing a collection of complete hydatidiform moles (CHMs) of Japanese, using high-density DNA arrays. CHMs are tissues carrying duplicated haploid genomes derived from single sperms, and are suitable material for the detection of CNVs, because they are expected to reveal greater signal to noise ratio in hybridization experiments. Also, the absence of heterozygosity ensures straightforward CNV interpretation without being bothered by overlapping CNV segments. We genotyped 100 CHM genomes using Affymetrix SNP 6.0 and Illumina 1M-duo, created a definitive haplotype map including 1.7 million SNPs and 2339 CNV region (CNVR) that is presented as D-HaploDB Phase 4.1.
Project description:Copy number variations (CNVs) constitute the largest portion of the human genome variation. We determined a genome-wide high resolution SNP/CNV haplotype structure of Asians, by analyzing a collection of complete hydatidiform moles (CHMs) of Japanese, using high-density DNA arrays. CHMs are tissues carrying duplicated haploid genomes derived from single sperms, and are suitable material for the detection of CNVs, because they are expected to reveal greater signal to noise ratio in hybridization experiments. Also, the absence of heterozygosity ensures straightforward CNV interpretation without being bothered by overlapping CNV segments. We genotyped 100 CHM genomes using Affymetrix SNP 6.0 and Illumina 1M-duo, created a definitive haplotype map including 1.7 million SNPs and 2339 CNV region (CNVR) that is presented as D-HaploDB Phase 4.1. Illumina Human1M-Duov3 BeadChip analyses were performed according to the manufacturer's directions on DNA extracted from 97 complete hydatidiform moles (CHMs) tissues collected throughout Japan.
Project description:Whole-genome sequencing and phasing of admixed Aboriginal Australian genomes and Papua New Guinean genomes using 10x Genomics Chromium technology.
This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute please see http://www.sanger.ac.uk/datasharing/
Project description:Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have a ~10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO, and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes. Examination of measured size of rice centromere nucleosome
Project description:Spliceosome recognition of pre-mRNA junctions requires binding of splicing factors to the 3' splice site. Most splicing occurs co-transcriptionally, but how splicing factors bind expressed gene is not understood. We show that the SF3B1, U2AF1, and U2AF2 splicing factors bind active promoters of both intron-containing and intronless genes. RNase A treatment reduces binding at promoters, implicating general interactions with nascent transcripts in promoter localization. Strikingly, U2AF2 also accumulates on the bodies of some genes and is not eliminated by RNase treatment. Neither RNA polymerase II nor the active gene body chromatin mark H3K36me3 is required to maintain U2AF2 on chromatin. We found that most exons in U2AF2-bound have phased nucleosomes at their exon-intron boundaries. However, some exons are poorly phased, and these require U2AF2 for inclusion in mature mRNA. We propose that nucleosome phasing and U2AF2 binding ensure exon inclusion.