Project description:Parkinson’s Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L. leaf extract modulates central events in PD pathogenesis, namely α-synuclein (αSyn) toxicity, aggregation and clearance. PEF was now subjected to a bio-guided fractionation with the aim of identifying the critical bioactive compound. We identified genipin, an iridoid, which relieves αSyn toxicity and aggregation. Furthermore, genipin promotes metabolic alterations and modulates lipid storage and endocytosis. Importantly, genipin was able to prevent the motor deficits caused by the expression of αSyn-GFP in a Drosophila melanogaster model of PD. These findings open new avenues for the exploitation of genipin for PD therapeutics.
Project description:Viscum album is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). We here present an investigation of the V. album energy metabolism taking place in mitochondria. Mitochondria were purified from young V. album leaves and membrane bound protein complexes characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics.