Project description:Drought represents a significant stress to microorganisms and is known to reduce microbial activity and organic matter decomposition in Mediterranean ecosystems. However, we lack a detailed understanding of the drought stress response of microbial decomposers. Here we present metatranscriptomic data on the physiological response of in situ microbial communities on plant litter to long-term drought in Californian grass and shrub ecosystems.
Project description:Interventions: We enrolled 415 subjects who under went colonoscopy at our institution from January 2021 to March 2022.The randomization method used in this study was the numbered container method according to the CONSORT guideline. The allocation message was generated by the computer program of the Python random module and then sealed in sequentially numbered identical containers according to the allocation sequence. After an eligibility check, the endoscopist opened theallocation message, and subsequently, examinees were randomly assigned to the CADe or control groups.;D016449;Numbered container method
Primary outcome(s): Adenoma detection rate in total colonoscopy
Study Design: randomized controlled trial, single blind, no treatment control/standard of care control, parallel assignment, diagnostic purpose
Project description:Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with B7 proteins CD80 and CD86. CTLA-4 is the first immune checkpoint targeted with a monoclonal antibody inhibitor. Checkpoint inhibitors have generated durable responses in many cancer patients, representing a revolutionary milestone in cancer immunotherapy. However, therapeutic efficacy is limited to a small portion of patients, and immune-related adverse events are noteworthy, especially for monoclonal antibodies directed against CTLA-4. Previously, small molecules have been developed to impair the CTLA-4: CD80 interaction; however, they directly targeted CD80 and not CTLA-4. In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to target CTLA-4. We validated primary hits with biochemical, biophysical, immunological, and experimental animal assays. We then optimized lead compounds and obtained inhibitors with an inhibitory concentration of 1 micromole in disrupting the interaction between CTLA-4 and CD80. Unlike ipilimumab, these small molecules did not degrade CTLA-4. Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. This project supports an AI-based framework in designing small molecules targeting immune checkpoints for cancer therapy.
Project description:Lagophthalmos is the incomplete closure of the eyelids posing the risk of corneal ulceration and blindness. Lagophthalmos is a common symptom of various pathologies. We aimed to program a convolutional neural network to automatize lagophthalmos diagnosis. From June 2019 to May 2021, prospective data acquisition was performed on 30 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany (IRB reference number: 20-2081-101). In addition, comparative data were gathered from 10 healthy patients as the control group. The training set comprised 826 images, while the validation and testing sets consisted of 91 patient images each. Validation accuracy was 97.8% over the span of 64 epochs. The model was trained for 17.3 min. For training and validation, an average loss of 0.304 and 0.358 and a final loss of 0.276 and 0.157 were noted. The testing accuracy was observed to be 93.41% with a loss of 0.221. This study proposes a novel application for rapid and reliable lagophthalmos diagnosis. Our CNN-based approach combines effective anti-overfitting strategies, short training times, and high accuracy levels. Ultimately, this tool carries high translational potential to facilitate the physician's workflow and improve overall lagophthalmos patient care.
Project description:We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Project description:SignificanceQuantifying meibomian gland morphology from meibography images is used for the diagnosis, treatment, and management of meibomian gland dysfunction in clinics. A novel and automated method is described for quantifying meibomian gland morphology from meibography images.PurposeMeibomian gland morphological abnormality is a common clinical sign of meibomian gland dysfunction, yet there exist no automated methods that provide standard quantifications of morphological features for individual glands. This study introduces an automated artificial intelligence approach to segmenting individual meibomian gland regions in infrared meibography images and analyzing their morphological features.MethodsA total of 1443 meibography images were collected and annotated. The dataset was then divided into development and evaluation sets. The development set was used to train and tune deep learning models for segmenting glands and identifying ghost glands from images, whereas the evaluation set was used to evaluate the performance of the model. The gland segmentations were further used to analyze individual gland features, including gland local contrast, length, width, and tortuosity.ResultsA total of 1039 meibography images (including 486 upper and 553 lower eyelids) were used for training and tuning the deep learning model, whereas the remaining 404 images (including 203 upper and 201 lower eyelids) were used for evaluations. The algorithm on average achieved 63% mean intersection over union in segmenting glands, and 84.4% sensitivity and 71.7% specificity in identifying ghost glands. Morphological features of each gland were also fed to a support vector machine for analyzing their associations with ghost glands. Analysis of model coefficients indicated that low gland local contrast was the primary indicator for ghost glands.ConclusionsThe proposed approach can automatically segment individual meibomian glands in infrared meibography images, identify ghost glands, and quantitatively analyze gland morphological features.
Project description:ObjectiveThere is a need to increase the performance and longevity of dental composites and accelerate the translation of novel composites to the market. This study explores artificial intelligence (AI), specifically machine learning (ML), to predict the performance outcomes (POs) of dental composites from their composite attributes (CAs).MethodsAn extensive dataset from over 200 publications was built and refined to 233 samples with 17 CAs and 7 POs. Nine ML models were evaluated for PO prediction performance using classified data, and Five ML models were evaluated for PO regression analysis.ResultsThe KNN model excelled in predicting flexural modulus (FlexMod), Decision Tree model in flexural strength (FlexStr) and volumetric shrinkage (ShrinkV), and Logistic Regression and SVM models in shrinkage stress (ShrinkStr). Receiver operating characteristic area under the curve (ROC AUC) analysis confirmed these results but found that Random Forest was more effective for FlexStr and ShrinkV, suggesting the possibility of Decision Tree overfitting the data. Regression analysis revealed that the Voting Regressor was superior for FlexMod and ShrinkV predictions, while Decision Tree Regression was optimal for FlexStr and ShrinkStr. Feature importance analysis indicated TEGDMA is a key contributor to FlexMod and ShrinkV, BisGMA and UDMA to FlexStr, and depth of cure, degree of monomer-to-polymer conversion, and filler loading to ShrinkStr.SignificanceThere is a need to conduct a full analysis using multiple ML models because different models predict different POs better, and for a large, comprehensive dataset to train robust AI models to facilitate the prediction and optimization of composite properties and support the development of new dental materials.