Project description:Small RNA was sequenced from banked peripheral blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into high and low bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N= 277) vs low (N= 278) BDR group. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. Results: We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR=2.26) between high and low BDR group. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways.
Project description:The ‘Genetic Epidemiology of Asthma in Costa Rica’ is a family-based cross-sectional cohort ascertained between February 2001 and August 2008 on a Hispanic population isolate from the Central Valley of Costa Rica. The study recruited children between 6 to 14 years of age with moderate persistent asthma.
Project description:Background Information The costa is a prominent striated fiber that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analyzed by electron microscopy and mass spectrometry. Results Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. Conclusions The costa of T. foetus is a complex and organized cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterized domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibers of other protozoan as well as in intermediate filaments. Significance Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determine the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the organization and function of this structure in unicellular organisms.
Project description:Rationale: MicroRNAs have emerged as crucial post-transcriptional and network regulators in inflammatory diseases, including asthma. We hypothesized that peripheral blood miRNA would be associated with airflow obstruction in children with asthma, and that some of these effects would also be observable in adults with COPD. Methods: We analyzed small RNA-Seq data from 365 peripheral blood samples from the Genetics of Asthma in Costa Rica Study (GACRS). GACRS comprised children from the Central Valley of Costa Rica age 6-14 years with physician-diagnosed asthma and ≥2 respiratory symptoms or asthma attacks in the prior year. FEV1/FVC percent-predicted was dichotomized at 100%, splitting the cohort into those with and without evidence of airflow obstruction and used as our primary outcome. Differentially expressed (DE) miRs were identified using the DESeq2 package in R with a 10% FDR and adjustment for age, gender, and inhaled corticosteroid (ICS) use. We attempted to replicate the top airflow obstruction-associated microRNAs from the GACRS study in the COPDGene study, in which blood microRNA data were available in 439 current and former smoking adults with and without airflow obstruction (defined as raw FEV1/FVC < 0.7). Results: After QC, we had 361 samples and 649 miRs for DE analysis. Of the 361 samples, 220 and 141 were from subjects without and with airflow obstruction, respectively. We found 1 upregulated (let-7e-5p p=0.0004) and 2 downregulated (miR-342-3p p=0.0002; miR-671-5p p=0.0001) miRs in subjects with airflow obstruction compared to those without airflow obstruction. These three miRNAs were then tested for association with airflow obstruction in the COPDGene study, in which let-7e-5p was upregulated (p = 0.064) and miR-342-3p (p =0.085) was downregulated in participants with FEV1/FVC < 0.7 (n=196) compared to those with FEV1/FVC > 0.7 (n=243). Differentially expressed miR’s target genes were enriched for PI3K-Akt, Hippo, WNT, MAPK, and focal adhesion signaling pathways. We also separately considered the targets of only the two miRNAs that were also associated with FEV1/FVC in the adult current and former smokers, where PI3K-Akt, MAPK and Hippo signaling pathways were among the top five most enriched pathways. Conclusion: Three DE miRs were linked to airflow obstruction in children with asthma. Two miRs were associated with FEV1/FVC in current and former smoking adults. These miRs were involved in asthma and COPD-related pathways: PI3K-Akt, Hippo, MAPK, and focal adhesion signaling pathways. Together these findings provide important evidence that these two disorders may share genetic regulatory systems that contribute to airflow obstruction.