Project description:Campylobacter jejuni is the major cause of acute gastroenteritis in the developed world. It is usually acquired through contaminated poultry as C. jejuni causes a silent asymptomatic infection of the chicken. Pathogens face different sources of stress during its transit through the gut. In this study, we describe the ability of C. jejuni to survive nitrosative stress at very low oxygen levels that reflect those in hypoxic gut environments. Specifically, we here explore an innovative model of signal recognition during colonization. We use a diffusion capsule to feed small, diffusible molecules from chicken caecal matter into a microaerobic C. jejuni culture to study the transcriptomic changes mounted as response to chemical signals present in the chicken gut. We find that in early stages of exposure to the caecal contents (10 min) the dual component colonization regulator, dccR, plays an important yet not fully understood role. Although the caecal material contains cyanide derived from plant sources, we find no role for a truncated globin (encoded by ctb), which has previously been implicated in resistance to this haem ligand.
Project description:Joint profiling of chromatin accessibility and gene expression from the same single cell provides critical information about cell types in a tissue and cell states during a dynamic process. These emerging multi-omics techniques help the investigation of cell-type resolved gene regulatory mechanisms. Here, we developed in situ SHERRY after ATAC-seq (ISSAAC-seq), a highly sensitive and flexible single cell multi-omics method to interrogate chromatin accessibility and gene expression from the same single cell. We demonstrated that ISSAAC-seq is sensitive and provides high quality data with orders of magnitude more features than existing methods. Using the joint profiles from thousands of nuclei from the mouse cerebral cortex, we uncovered major and rare cell types together with their cell-type specific regulatory elements and expression profiles. Finally, we revealed distinct dynamics and relationships of transcription and chromatin accessibility during an oligodendrocyte maturation trajectory.