Project description:Microbial communities associated with the human body are highly dynamic and reflect the host environment and lifestyle over time. Studies show death is no exception, with data demonstrating similar antemortem and postmortem microbiomes up to 48 h following death. These predictable microbial biomarkers can inform death investigation by helping to estimate the postmortem interval and build models to identify cause and manner of death. However, no attempts have been made to model potential microbial biomarkers in pediatric (≤2 years) deaths. This study provided a cross-sectional survey of the microbiota of 53 pediatric cases (black, white, both sexes) seen in Wayne County, Michigan. Autopsy cases represented accidents, homicides, or natural causes. Postmortem microbiome were collected by swabbing the eyes, ears, nose, mouth, umbilicus, brain, rectum, trabecular space, and cardiac blood. 16S rRNA sequence analyses indicated that sex, race, age, body site, and manner of death (MOD) had significant effects on microbiome composition, with significant interactions among MOD, race, and age. Amplicon sequence variants identified intra- and interhost dispersion of the postmortem microbiome depending on death circumstance. Among manners of death, non-accidental deaths were significantly distinct from all other deaths, and among body sites the rectum was distinct in its microbial composition. There is a real need for robust postmortem microbiome before it can be standardized as a practical tool for use in forensic investigation or public health. These results inform postmortem microbial variability during pediatric death investigation that contributes to a larger effort to understand the postmortem microbiome.
Project description:We performed single cell RNAseq of liver cells in acute liver failure model in mice with different microbiome states to unravel cellular changes in the disease and the impact of gut microbiota on the physiology in this disease.
Project description:This project study and comprehensively characterize the lysine acetyltion in the human gut microbiome using antibody-based enrichment strategry and Orbitrap mass spectrometer. The technique has also been applied to study the microbiome in pediatric Crohn's disease and control subjects in order to understand the functional alterations of microbiome in IBD.
Project description:A metaproteomics analysis was conducted on the infant fecal microbiome to characterize global protein expression in 8 samples obtained from infants with a range of early-life experiences. Samples included breast-, formula- or mixed-fed, mode of delivery, and antibiotic treatment and one set of monozygotic twins. Although label-free mass spectrometry-based proteomics is routinely used for the identification and quantification of thousands of proteins in complex samples, the metaproteomic analysis of the gut microbiome presents particular technical challenges. Among them: the extreme complexity and dynamic range of member taxa/species, the need for matched, well-annotated metagenomics databases, and the high inter-protein sequence redundancy/similarity between related members. In this study, a metaproteomic approach was developed for assessment of the biological phenotype and functioning, as a complement to 16S rRNA sequencing analysis to identify constituent taxa. A sample preparation method was developed for recovery and lysis of bacterial cells, followed by trypsin digestion, and pre-fractionation using Strong Cation Exchange chromatography. Samples were then subjected to high performance LC-MS/MS. Data was searched against the Human Microbiome Project database, and a homology-based meta-clustering strategy was used to combine peptides from multiple species into representative proteins. Bacterial taxonomies were also identified, based on species-specific protein sequences, and protein metaclusters were assigned to pathways and functional groups. The results obtained demonstrate the applicability of this approach for performing qualitative comparisons of human fecal microbiome composition, physiology and metabolism, and also provided a more detailed assessment of microbial composition in comparison to 16S rRNA.
Project description:The gut microbiome plays an important role in early life, protecting newborns from enteric pathogens, promoting immune system development and providing key functions to the infant host. Currently, there are limited data to broadly assess the status of the US healthy infant gut microbiome. To address this gap, we performed a multi-state metagenomic survey and found high levels of bacteria associated with enteric inflammation (e.g. Escherichia, Klebsiella), antibiotic resistance genes, and signatures of dysbiosis, independent of location, age, and diet. Bifidobacterium were less abundant than generally expected and the species identified, including B. breve, B. longum and B. bifidum, had limited genetic capacity to metabolize human milk oligosaccharides (HMOs), while B. infantis strains with a complete capacity for HMOs utilization were found to be exceptionally rare. Considering microbiome composition and functional capacity, this survey revealed a previously unappreciated dysbiosis that is widespread in the contemporary US infant gut microbiome.