Project description:Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii, which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L-1 and 6810.3 × 10⁶ cells·L-1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes.
Project description:The concentration of microcystins (MCs) produced during blooms depends on variations in both the proportion of strains containing the genes involved in MC production and the MC cell quota (the ratio between the MC concentration and the density of cells with the mcyA genotype) for toxic strains. In order to assess the dynamics of MC-producing and non-MC-producing strains and to identify the impact of environmental factors on the relative proportions of these two subpopulations, we performed a 2-year survey of a perennial bloom of Planktothrix agardhii (cyanobacteria). Applying quantitative real-time PCR to the mcyA and phycocyanin genes, we found that the proportion of cells with the mcyA genotype varied considerably over time (ranging from 30 to 80% of the population). The changes in the proportion of cells with the mcyA genotype appeared to be inversely correlated to changes in the density of P. agardhii cells and also, to a lesser extent, to the availability of certain nutrients and the abundance of cladocerans. Among toxic cells, the MC cell quota varied throughout the survey. However, a negative correlation between the MC cell quota and the mcyA cell number during two short periods characterized by marked changes in the cyanobacterial biomass was found. Finally, only 54% of the variation in the MC concentrations measured in the lake can be explained by the dynamics of the density of cells with the MC producer genotype, suggesting that this measurement is not a satisfactory method for use in monitoring programs intended to predict the toxic risk associated with cyanobacterial proliferation.
Project description:Raphidiopsis raciborskii and Planktothrix agardhii are filamentous, potentially toxin-producing cyanobacteria that form nuisance blooms in fresh waters. Here, we report high-quality metagenome-assembled genome sequences of R. raciborskii and P. agardhii collected from a bloom in Kissena Lake, New York.
Project description:Microcystins (MCs) are toxic heptapeptides that are produced by filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii via nonribosomal peptide synthesis. MCs share a common structure cyclo (-D-Alanine(1)-L-X(2)- D-erythro-beta-iso-aspartic acid(3)-L-Z(4)-Adda(5)-D-Glutamate(6)- N-methyl-dehydroalanine(7)) where X(2) and Z(2) are variable L-amino acids in positions 2, 4 of the molecule. Part of the mcyB gene (1,451 bp) that is involved in the activation of the X(2) amino acid during MC synthesis was sequenced in 49 strains containing different proportions of arginine, homotyrosine, and leucine in position 2 of the MC molecule. Twenty-five genotypes were found that consisted of eight genotype groups (A-H, comprising 2-11 strains) and 17 unique genotypes. P. rubescens and P. agardhii partly consisted of the same mcyB genotypes. The occurrence of numerous putative recombination events that affected all of the genotypes can explain the conflict between taxonomy and mcyB genotype distribution. Genotypes B (homotyrosine and leucine in X(2)) and C (arginine in X(2)) showed higher nonsynonymous/synonymous (d(N)/d(S)) substitution ratios implying a relaxation of selective constraints. In contrast, other genotypes (arginine, leucine, homotyrosine) showed lowest d(N)/d(S) ratios implying purifying selection. Restriction fragment length polymorphism (RFLP) revealed the unambiguous identification of mcyB genotypes, which are indicative of variable X(2) amino acids in eight populations of P. rubescens in the Alps (Austria, Germany, and Switzerland). The populations were found to differ significantly in the proportion of specific genotypes and the number of genotypes that occurred over several years. It is concluded that spatial isolation might favour the genetic divergence of microcystin synthesis in Planktothrix spp.
Project description:Blooms of the cyanobacterium Planktothrix agardhii are common in shallow, eutrophic freshwaters. P. agardhii may produce hepatotoxic microcystins (MCs) and many other bioactive secondary metabolites belonging mostly to non-ribosomal oligopeptides. The aim of this work was to study the effects of two extracts (Pa-A and Pa-B) of P. agardhii-predominated bloom samples with different oligopeptide profiles and high concentration of biogenic compounds on another natural P. agardhii population. We hypothesised that the P. agardhii biomass and content of oligopeptides in P. agardhii is shaped in a different manner by diverse mixtures of metabolites of different P. agardhii-dominated cyanobacterial assemblages. For this purpose, the biomass, chlorophyll a and oligopeptides content in the treated P. agardhii were measured. Seven-day microcosm experiments with four concentrations of the extracts Pa-A and Pa-B were carried out. Generally, aeruginosins (AERs), cyanopeptolins (CPs) and anabaenopeptins (APs) were the most numerous peptides; however, only 16% of them were common for both extracts. The addition of the extracts resulted in similar effects on P. agardhii: an increase in biomass, Chl-a and MC content in the exposed P. agardhii as well as changes in its oligopeptide profile were observed. MCs present in the extracts did not inhibit accumulation of P. agardhii biomass, and did not have any negative effect on MC and Chl-a content. No evidence for bioaccumulation of dissolved peptides in the P. agardhii exposed was found. As the two tested extracts differed considerably in oligopeptide composition, but contained similar high concentrations of nutrients, it seems that biogenic compounds, not oligopeptides themselves, positively influenced the mixed natural P. agardhii population.
Project description:Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P. agardhii isolates were obtained from early (June) blooms via single filament isolation; eight have been characterized from 2016, and 12 additional isolates have been characterized from 2018 for a total of 20 new cultures. These novel isolates were processed for genomic sequencing, where reads were used to generate scaffolds and contigs which were annotated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment to generate phylogenetic trees and comparison of genetic rearrangements between isolates. Nitrogen acquisition and metabolism was compared across isolates. Secondary metabolite production was genetically explored including microcystins, two types of aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides. Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences across all isolates and against the known Planktothrix-specific cyanophage, PaV-LD. Overall, the uniqueness of each genome from Planktothrix blooms sampled from the same site and at similar times belies the unexplored diversity of this genus.
Project description:Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17-31°C), conductivity (0.226-1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7-12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.