Project description:transcriptome changes in pea leaves with sulfur deficency/sufficiency during reproductive phase.-Characterization of transcriptome changes in leaves of wild-type and PsSultr4 mutant lines (for a sulfur transporter) subjected or not to sulfur deficiency during the reproductive phase 4plex_pea_2014_01 - transcriptome changes in pea leaves with sulfur deficency/sufficiency during reproductive phase. - Role of sulfur and of the sulfate store in leaf metabolism. - Comparison of: 1- The leaf transcriptome of pea subjected or not to sulfur deficiency during the reproductive phase (S+ versus S –) 2- The leaf transcriptome of wild-type and mutant lines for a sulfur transporter (two TILLING alleles) grown under sulfur sufficient conditions : WT1/Mut1 S+ et WT2/Mut2 S+ 3- The leaf transcriptome of wild-type and mutant lines for a sulfur transporter (two TILLING alleles) grown under sulfur deficient conditions : WT1/Mut1 S+ et WT2/Mut2 S+
Project description:12plex_pea_2013_02 - 12plex_pea_2013_02_f - What is the effect of a moderate water stress on seed filling (reserve accumulation) and nitrogen remobilisation in pea (Pisum sativum) - Pea plants (genotype Cameor) were subjected to a moderate water stress at the beggining of the seed filling period (12 Days After Pollination) of the second flowering node for a period of 8 days. Samples were collected from Well Watered (WW) plants at the beginning of the stress imposition (point A, T=0), and from Water-Stressed (WS) and WW control plants at the end of the drought period (point B, T=+8). Samples named SEED consisted of seeds from the pod of the second flowering node (seed-WW-A, seed-WW-B and Seed-WS-B). Samples named LEAF consisted of the leaves and stem sections from the two vegetative nodes below the first flowering node (leaf-WW-A, Leaf-WW-B and Leaf-WS-B). Each sample consited of a pool of 3 individual plants and 4 repetitions per condition were carried out.
Project description:12plex_pea_2013_02 - 12plex_pea_2013_02_g - What is the effect of a moderate water stress on seed filling (reserve accumulation) and nitrogen remobilisation in pea (Pisum sativum) - Pea plants (genotype Cameor) were subjected to a moderate water stress at the beggining of the seed filling period (12 Days After Pollination) of the second flowering node for a period of 8 days. Samples were collected from Well Watered (WW) plants at the beginning of the stress imposition (point A, T=0), and from Water-Stressed (WS) and WW control plants at the end of the drought period (point B, T=+8). Samples named SEED consisted of seeds from the pod of the second flowering node (seed-WW-A, seed-WW-B and Seed-WS-B). Samples named LEAF consisted of the leaves and stem sections from the two vegetative nodes below the first flowering node (leaf-WW-A, Leaf-WW-B and Leaf-WS-B). Each sample consited of a pool of 3 individual plants and 4 repetitions per condition were carried out.
Project description:Based on the generation of ESTs, we developed a spruce cDNA microarray composed of 21,843 cDNA elements selected from 12 cDNA libraries representing developmental stages of xylem, phloem, bark and roots, as well as elicitor-treated bark. Clones on the array were selected from a CAP3 assembly of 50,770 hq 3’ ESTs, and were carefully chosen to represent a minimally redundant gene set. Using this array we examined global changes in the transcriptome of Sitka spruce attacked for two days by stem-boring white pine weevils. Differentially expressed genes were determined using three criteria: fold-change between weevil-treated and untreated control > 1.5-fold, P value < 0.05 and Q value < 0.05. After 48 h of weevil feeding, 1,857 (8.5%) microarray elements identified transcripts as up-regulated, compared to 1,374 (6.3%) down-regulated. Keywords: Stress response