Project description:Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from classical PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to classical PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.
Project description:<p>Gregarines are usually classified as parasites, but recent studies suggest that they should be viewed on a parasitism-mutualism spectrum and may even be seen as part of the gut microbiota of host insects. As such, they may also impact the consumption of their hosts and/or be involved in the digestion or detoxification of the host's diet. To study such effects of a gregarine species on those traits in its host, the mustard leaf beetle (<em>Phaedon cochleariae</em>) was used. This beetle species feeds on Brassicaceae plants that contain glucosinolates, which form toxic compounds when hydrolyzed by myrosinases. We cleaned host eggs from gametocysts and spores and reinfected half of the larvae with gregarines, to obtain gregarine-free (G-) and gregarine-infected (G+) larvae. Growth and food consumption parameters of these larvae were assessed by rearing individuals on watercress (<em>Nasturtium officinale</em>, Brassicaceae). A potential involvement of gregarines in the glucosinolate metabolism of <em>P. cochleariae</em> larvae was investigated by offering G-and G+ larvae leaf discs of watercress (containing mainly the benzenic 2-phenylethyl glucosinolate and myrosinases) or pea (<em>Pisum sativum</em>, Fabaceae, lacking glucosinolates and myrosinases) treated with the aliphatic 4-pentenyl glucosinolate or the indole 1-methoxy-3-indolylmethyl glucosinolate. Larval and fecal samples were analyzed via UHPLC-QTOF-MS/MS to search for breakdown metabolites. Larval development, body mass, growth rate and efficiency to convert food into body mass were negatively affected by gregarine infection while the pupal mass remained unaffected. The benzenic and aliphatic glucosinolates were conjugated with aspartic acid, while the indole glucosinolate was conjugated with glutamic acid. Gregarine infection did not alter the larvae's ability to metabolize glucosinolates and was independent of plant myrosinases. In summary, some negative effects of gregarines on host performance could be shown, indicating parasitism. Future studies may further disentangle this gregarine-host relationship and investigate the microbiome potentially involved in the glucosinolate metabolism.</p>
Project description:Brassicaceae plants contain glucosinolates, which are hydrolysed by myrosinases to toxic products such as isothiocyanates and nitriles, acting as defences. Herbivores have evolved various detoxification strategies, which are reviewed here. Larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) metabolise hydrolysis products of benzenic glucosinolates by conjugation with aspartic acid. In this study, we investigated whether P. cochleariae uses the same metabolic pathway for structurally different glucosinolates, whether the metabolism differs between adults and larvae and which hydrolysis products are formed as intermediates. Feeding experiments were performed with leaves of watercress (Nasturtium officinale, Brassicaceae) and pea (Pisum sativum, non-Brassicaceae), to which glucosinolates with structurally different side chains (benzenic, indole or aliphatic) or their hydrolysis products were applied. Samples were analysed by UHPLC-QTOF-MS/MS or TD-GC-MS. The same aspartic acid conjugates as previously identified in larvae were also detected as major metabolites of benzenic glucosinolates in adults. Indol-3-ylmethyl glucosinolate was mainly metabolised to N-(1H-indol-3-ylcarbonyl) glutamic acid in adults and larvae, while the metabolism of 2-propenyl glucosinolate remains unclear. The metabolism may thus proceed primarily via isothiocyanates rather than via nitriles, while the hydrolysis occurs independently of plant myrosinases. A detoxification by conjugation with these amino acids is not yet known from other Brassicaceae-feeders.