Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:The delta smelt (Hypomesus transpacificus) is a pelagic fish species endemic to the Sacramento-San Joaquin Estuary in Northern California, listed as endangered under both the USA Federal and Californian State Endangered Species Acts and acts as an indicator of ecosystem health in its habitat range. Interrogative tools are required to successfully monitor effects of contaminants upon the delta smelt, and to research potential causes of population decline in this species. We used microarray technology to investigate genome-wide effects in 47-day old larvae after a 7-day exposure to ambient water samples from the Sacramento River at a monitoring field station (Hood) situated 8 miles downstream of the Sacramento regional Wastewater Treatment Plant. Genomic assessments were carried out on surviving organisms and contrasted to laboratory controls.
2012-09-20 | GSE40991 | GEO
Project description:Metabarcoding of fish species using eDNA
| PRJNA1199188 | ENA
Project description:Water eDNA metabarcoding, raw sequence data
Project description:Here We revealed the complex mechanism of viviparity in water lily. The transcriptomic signatures identified in this pathway are important basis for future breeding and research of viviparity in water lily and other plant species.
Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature.