Project description:Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a novel transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions. NFIA and the adipogenic master regulator, PPARgamma, co-localize at the brown-fat-specific enhancers. Moreover, the binding of NFIA precedes and facilitates the binding of PPARgamma, leading to increased chromatin accessibility and active transcription. Introduction of NFIA into myoblasts results in brown adipocyte differentiation. Conversely, the brown fat of NFIA knockout mice displays impaired expression of the brown-fat-specific genes and reciprocal elevation of muscle genes. Finally, expression of NFIA and the brown-fat-specific genes is positively correlated in human brown fat. These results indicate that NFIA is a key transcriptional regulator of brown fat and exerts its effects by co-localizing with PPARg at cell-type-specific enhancers.
Project description:We performed ChIP-seq to chart genome-wide maps of H3K27me3 in brown preadipocytes and mature brown adipocytes. We observed a subset of brown fat-specific genes, but not common fat genes or white fat-specific genes, possess the H3K27me3 mark in preadipocytes, and this mark is erased in mature adipocytes. H3K27me3 ChIP-seq in brown preadipocytes and mature adipocytes.
Project description:PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.