A high-quality reference genome and comparative genomics of the widely-farmed banded cricket (Gryllodes sigillatus) identifies selective breeding targets
Ontology highlight
ABSTRACT: De novo genome assembly of Gryllodes sigillatus
Project description:Farmed insects have gained attention as an alternative, sustainable source of protein with a lower carbon footprint than traditional livestock. We present a high-quality reference genome for one of the most commonly farmed insects, the banded cricket Gryllodes sigillatus. In addition to its agricultural importance, G. sigillatus is also a model in behavioural and evolutionary ecology research on reproduction and mating systems. We report comparative genomic analyses that clarify the banded cricket's evolutionary history, identify gene family expansions and contractions unique to this lineage, associate these with agriculturally important traits, and identify targets for genome-assisted breeding efforts. The high-quality G. sigillatus genome assembly plus accompanying comparative genomic analyses serve as foundational resources for both applied and basic research on insect farming and behavioural biology, enabling researchers to pinpoint trait-associated genetic variants, unravel functional pathways governing those phenotypes, and accelerate selective breeding efforts to increase the efficacy of large-scale insect farming operations.
Project description:Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity.
Project description:Microplastic is a growing concern as an environmental contaminant as it is ubiquitous in our ecosystems. Microplastics are present in terrestrial environments, yet the majority of studies have focused on the adverse effects of microplastics on aquatic biota. We hypothesized that microplastic ingestion by a terrestrial insect would have localized effects on gut health and nutrient absorption, such that prolonged dietary microplastic exposure would impact growth rate and adult body size. We further hypothesized that plastic form (fibres vs. beads) would influence these effects because of the nature of gut-plastic interactions. Freshly hatched tropical house crickets (Gryllodes sigillatus) were fed a standard diet containing different concentrations of either fluorescent polyethylene microplastic beads (75-105 μm), or untreated polyethylene terephthalate microfibers (< 5 mm) until they died or reached adulthood (approximately 8 weeks). Weight and body length were measured weekly and microplastic ingestion was confirmed through fluorescence microscopy and visual inspection of the frass. While, to our surprise, we found no effect of polyethylene bead ingestion on growth rate or final body size of G. sigillatus, females experienced a reduction in size and weight when fed high concentrations of polyethylene terephthalate microfibers. These results suggest that high concentrations of polyethylene beads of the 100 μm size range can pass through the cricket gut without a substantial negative effect on their growth and development time, but high concentrations of polyethylene terephthalate microfibers cannot. Although we report the negative effects of microplastic ingestion on the growth of G. sigillatus, it remains uncertain what threats microplastics pose to terrestrial insects.