Project description:Potato is the most widely produced tuber crop worldwide. However, reconstructing the four haplotypes of its autotetraploid genome remained an unsolved challenge. Here, we report the 3.1 Gb haplotype-resolved (at 99.6% precision), chromosome-scale assembly of the potato cultivar 'Otava' based on high-quality long reads, single-cell sequencing of 717 pollen genomes and Hi-C data. Unexpectedly, ~50% of the genome was identical-by-descent due to recent inbreeding, which was contrasted by highly abundant structural rearrangements involving ~20% of the genome. Among 38,214 genes, only 54% were present in all four haplotypes with an average of 3.2 copies per gene. Taking the leaf transcriptome as an example, 11% of the genes were differently expressed in at least one haplotype, where 25% of them were likely regulated through allele-specific DNA methylation. Our work sheds light on the recent breeding history of potato, the functional organization of its tetraploid genome and has the potential to strengthen the future of genomics-assisted breeding.
Project description:The upas tree (Antiaris toxicaria Lesch.) is a medically important plant that contains various specialized metabolites with significant bioactivity. The lack of a reference genome hinders the in-depth study as well as rational exploitation and conservation of this plant. Here, we present the first holotype-resolved chromosome-scale genome of the upas tree. The assembled genome consisted of 26 chromosomes that contain 1.34 Gb of sequencing data with a contig N50 length of 60 Mb. Genome annotation identified 43,500 protein-coding genes in the upas tree genome, of which 98.75% were functionally annotated. This high-quality reference genome will lay the foundation for further studies on the evolution and functional genomics of the upas tree.