Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:Filoviruses infect a wide range of cell types with the exception of lymphocytes. The intracellular proteins cathepsin B and L, two-pore channel 1 and 2, and bona fide receptor Niemann–Pick Disease C1 (NPC1) are essential for the endosomal phase of cell entry. However, earlier steps of filoviral infection remain poorly characterized. Numerous plasma membrane proteins have been implicated in attachment but it is still unclear which ones are sufficient for productive entry. To define a minimal set of host factors required for filoviral glycoprotein-driven cell entry, we screened twelve cell lines and identified the nonlymphocytic cell line SH-SY5Y to be specifically resistant to filovirus infection. Heterokaryons of SH-SY5Y cells fused to susceptible cells were susceptible to filoviruses, indicating that SH-SY5Y cells do not express a restriction factor but lack an enabling factor critical for filovirus entry. However, all tested cell lines expressed functional intracellular factors. Global gene expression profiling of known cell surface entry factors and protein expression levels of analyzed attachment factors did not reveal any correlation between susceptibility and expression of a specific host factor. Using binding assays with recombinant filovirus glycoprotein, we identified cell attachment as the step impaired in filovirus entry in SH-SY5Y cells. Individual overexpression of attachment factors T-cell immunoglobulin and mucin domain 1 (TIM-1), Axl, Mer, or dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) rendered SH-SY5Y cells susceptible to filovirus glycoprotein-driven transduction. Our study reveals that a lack of attachment factors limits filovirus entry and provides direct experimental support for a model of filoviral cell attachment where host factor usage at the cell surface is highly promiscuous.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:We are investigating the mRNA expression profiles of human lung cells to gaseous urban mixtures We used microarrays to compare the global mRNA expression profiles upon response to fresh against aged urban mix Keywords: dose A549 cells were grown to confluency and exposed to fresh urban mix, aged urban mix, or mock-treated. RNA was collected 9 hrs after exposure.
Project description:While biologic therapies targeting type 2 (T2) inflammation reduce acute exacerbation rates in children with asthma and T2 inflammation, exacerbations still occur, and the underlying molecular mechanisms are poorly defined. We aimed to identify multiple distinct molecular mechanisms implicated in asthma exacerbations by characterizing respiratory illnesses among urban children with eosinophilic asthma enrolled in a clinical trial comparing treatment with mepolizumab versus placebo
Project description:We are investigating the mRNA expression profiles of human lung cells to gaseous urban mixtures We used microarrays to compare the global mRNA expression profiles upon response to fresh against aged urban mix Keywords: dose
Project description:Atmospheric particulate matter (PM) is a recognized risk factor for the global burden of disease in human populations. We are presenting here the application of toxicogenomics in the evaluation of the toxic effects of organic content of atmospheric particle matter (PM), from urban and rural environments (city of Barcelona and village of La Pobla, NE Spain), using the developing zebrafish embryo. The main goal is to identify the metabolic pathways involved in the adverse effects observed in zebrafish embryos exposed to PM organic content from urban and rural environments, also allowing the selection of genes of interest that are differentially expressed. The relevance of particle size to the PM toxicity is also addressed. Indeed, the zebrafish embryos were exposed to PM of aerodynamic diameter larger than 7.2 μm and smaller than 0.5 μm (PM10 and PM0.5, respectively). PM0.5 concentrated biological and toxic activities linked to organic substances. Transcriptomic analyses showed strong induction of the AhR signalling pathway (a.k.a. dioxin-like activity) for embryos exposed to both rural and urban extracts, correlating with the concentrations of PAHs. Urban extracts, with strong contribution of traffic emissions, specifically de-regulated oxidative stress-related genes, as well as pancreatic and eye-lens specific genes, two organs known to be affected by air pollution in humans. Exposure to rural extracts, with high contribution of wood burning emissions, affected genes implicated in basic cellular functions, in agreement with their strong embryotoxicity. Extracts from rural and urban samples elicited both common and specific transcriptome responses, suggesting different potentially adverse outcomes depending on PM source and composition. The authors thank the financial support of the Spanish Ministry (project TEA-PARTICLE, grant number CGL2011-29621) and the Portuguese Foundation for Science and Technology for the doctoral grant of Sofia R. Mesquita (SFRH/BD/80710/2011) funded by the Program POPH-QREN through the Portuguese Ministry of Education and Science and the European Social Fund, and support through project PEst-C/MAR/LA0015/2013.