Project description:The Breviatea form a lineage of free-living protists that emerged over 800 million years ago as a sister clade to opistokonta, comprising animals and fungi. Breviates conserved the ability to thrive in absence of oxygen which was an important adaptation to the low oceanic oxygen-levels that prevailed by that time. We previously found that the novel breviate, Lenisia limosa, gen. et sp. nov., was opportunistically colonized by relatives of animal-associated Arcobacter. Here we used differential proteomics to investigate how the presence/absence of symbiotic Arcobacter is manifested in Lenisia limosa's proteome. Vice versa, we also measured how symbiosis is reflected in Arcobacter's proteome. The results provide a resource to characterize the molecular underpinnings of a novel protist-prokaryote symbiosis.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:in vitro comparison between two MRSA grown in rich (BHI) and poor media (SNM), compared with the nasal metatranscriptome reads of S. aureus. Global expression profile of two MRSA strains of S.aureus harvested in two different growth phases and compared with a metatranscriptome nose sample of a S. aureus carrier.
Project description:We compiled a metatranscriptome by extracting total RNA (including ribosomes), reverse transcription and solexa sequencing. We obtained quantitative data on the transcription of each orf to assess the importance of each orf to the metabolism of Kuenenia stuttgartiensis