Project description:Resistance to pyrethroids, the only insecticide approved for bednets, threatens control of the major malaria vector, Anopheles funestus, in Malawi. To improve the management of such resistance countrywide, it is crucial to understand the dynamics and mechanisms driving resistance in the field. In this study the levels of insecticide resistance were determined across the highly endemic densely populated lake and southern agricultural area. Insecticide resistance to pyrethoids was assessed using standardized WHO bioassay methods and resistant mosquitoes were hybridized to susceptible mosquitoes. This microarray analysis revealed the key role of cytochrome P450 genes such as CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the over-expression of these CYP450s was detected across a south/north transect, with CYP6M7 more highly over-transcribed in the two northern collection sites and the tandemly duplicated genes, CYP6P9a and CYP6P9b, more greatly over-transcribed in the south.
Project description:Whole-genome methylomes and total transcriptomes for muscle and liver tissues of Lake Malawi cichlid species characterised in the context of phenotypic diversification.
Project description:Generation of single cell and single nuclei transcriptomic data of post-mortem tissues from a Malawi cohort. We aim to explore differences in the immune response between Covid-19, Non-Covid19 LRTD (lower respiratory tract disease) and no-LTRD at the single cell level from lung, nasal and blood. Autopsies were conducted through minimally invasive autopsy using needle-biopsy. Samples were then processed with a 10X Chromium in Blantyre, Malawi. Some samples were run individually and others pooled. Pooled samples were split using single nucleotide polymorphisms or through hashtag oligonucelotides. Data processing and analysis was performed in R using the Seurat package.
Project description:Short-chained aliphatic polyamines (PAs) have recently been recognized as an important carbon, nitrogen, and/or energy source for marine bacterioplankton. To study the genes and taxa involved in the transformations of different PA compounds and their potential variations among marine systems, we collected surface bacterioplankton from nearshore, offshore, and open ocean stations in the Gulf of Mexico and examined their metagenomic responses to additions of single PA model compounds (putrescine, spermidine, or spermine). Genes affiliated with PA uptake and all three known PA degradation pathways, i.e., transamination, γ-glutamylation, and spermidine cleavage, were significantly enriched in most PA-treated metagenomes. In addition, identified PA-transforming taxa were mostly the alpha and gamma classes of Proteobacteria, with less important contributions from members of Betaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Planctomycetes. These findings suggest that PA transformations are ubiquitous, have diverse pathways, and are carried out by a broad range of the bacterioplankton taxa in the Gulf of Mexico. Identified PA-transforming bacterial genes and taxa were different among nearshore, offshore, and open ocean sites, but were little different among individual compound-amended metagenomes at any specific site. These observations further indicate that PA-transforming taxa and genes are site-specific and with high similarities among PA compounds.Supplementary informationThe online version contains supplementary material available at 10.1007/s42995-021-00114-x.
Project description:Many modern farming practices negatively impact ecosystems on the local and global scales. Here, we assessed the taxonomic structures of 48 soil microbial communities along an agricultural transect using 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing. We further characterized the functional structures of a subsample of 12 microbiomes using whole-genome sequencing.